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Abstract— Motion planning for service robots used for hu-
man assistance in complex environments is a challenging
task with multifaceted requirements. On the one hand, the
generated path has to avoid obstacles and satisfy the user
requirements. On the other, the generated path has to be
perceived as comfortable by the user. An efficient solution to this
difficult problem is based on a separation of concerns between
two subproblems: 1. generating a sequence of waypoints that
connects the source to the destination, 2. generating a path that
joins the waypoints and complies with the dynamic constraints.
In this paper, we concentrate on the second problem with
an explicit focus on how to account for users’ comfort. The
result is accomplished by solving an optimal control problem
that inherently generates the smooth trajectories required by
the user. The cost functions used in the optimisation problem
allows to take different dimensions of the user’s comfort into
consideration. Our technique lends itself to an efficient numeric
solution and can be easily applied to different algorithms for
waypoint generation.

I. INTRODUCTION

In the past few years, several research projects on both
sides of the Atlantic Ocean and in Japan have targeted
a particular application of service robotics: assisting older
adults or disabled users in their navigation of public spaces.
Such efforts have generated interesting proposals for smart
wheelchairs [1], [2] or intelligent walkers for older adults [3],
[4], [5]. Key to the acceptability of these technological
solutions are the level of comfort of the trajectories planned
to travel across crowded environments, their safety [6] and
and their compliance with social rules [1], [7].

The challenging task of navigation in human environments
is typically solved using a two phases approach: 1) gener-
ation of a sequence of waypoints to reach the destination,
2) generation of a path joining the waypoints that optimises
the robot manoeuvres. This decomposition reflects a sensible
separation of concerns between finding a path that avoids
obstacles and satisfies the user requirements, and generating
a curve that respects dynamic constraints.

A plethora of solutions exist in the literature for the
generation of waypoints. A classical approach is the gen-
eration of a graph representing the environment (e.g., using
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quad-tree decompositions [8]) followed by the application
of the Dijkstra’s algorithm to find the shortest path [9]. An
established trend is toward the use of randomised algorithms
such as the Rapidly-exploring Random Trees (RRT) [10], or
its recent RRT∗ [11] evolution. The generation of waypoints
can easily account for such constraints as “plan a path that
stay close most of the times to benches” by using high level
planning languages [12] or modified versions of Dijkstra’s
solution [13]. What is more, a global plan consisting of
a sequence of waypoints can be “locally” fine-tuned us-
ing contextual information collected on the ground (e.g.,
presence of by-standers). Important examples are the Risk
RRT [14], based on RRT∗, stochastic approaches making use
of statistical models to predict the motion of humans nearby
the robot [15], [16], or elastic bands to adapt a plan to the
presence of obstacles [17].

In this paper, we take on the problem of generating an
optimal path joining the waypoints, assuming that the latter
have been generated already by the most convenient solution
for the problem at hand. The generation of the optimal path
has been traditionally looked at from the perspective of the
vehicle dynamics. From a practical view point, it is possible
to plan a path in an environment with any standard planner
(such as RRT∗ [11] or the A∗ algorithm [18]) and then run
on it a simulation of the vehicle smoothing the curvatures.
This is exactly the line followed first in [17] and by a number
of similar papers that followed.

The point we make in this paper is that effective motion
planning algorithms for assistive robots has to explicitly
consider user comfort as a first class citizen in path genera-
tion. User comfort (or lack of) has been historically studied
for ground vehicles, such as cars or trains, and for other
transportation systems, and it is widely recognised that the
discomfort increases with body accelerations and jerk [19],
[20], [21]. Such results have been confirmed by neuroscience
results on grasping or humans’ arms motion [22]. When it
comes to evaluating the comfort of trajectories of mobile
robots, the jerk and the acceleration are obviously related to
the curvature of the path and to possible discontinuities in
it.

Most of the vehicles used for service robotics are unicycles
or car-like vehicles (or simplified variations). The latter have
evident advantages for comfort since the type of curves they
move along are smooth (segments of clothoid) and have
continuous curvature. What is more, optimal solutions for
car–like vehicles are very efficient to find using semi-analytic
techniques [23], [24], [25]. Finally, direct observations made
by Laumond et al. [26] suggest that humans tend to move
according to a kinematic non-holonomic model, which bears



a close resemblance with a simplified car-like model.
All this considerations suggested us to set up path planning

as an optimal control problem a la Pontryagin for a simpli-
fied car–like. The boundary conditions for the problem are
given by the waypoints, and different functionals related to
the path curvature or to its length can be used to express
the user’s comfort. This is possible even if our vehicle is
actually a unicycle, by the addition of “artificial” dynamics
that constrain its motion along the same trajectories as a
car–like vehicle. Typical solutions in the literature to this
type of problems are based on the use of a finite set of
primitives. For instance Fraichard et al. [27] use circular
arcs, tangent straight lines or continuous curvature segments
to generate a path, but they produce discontinuous curvatures
in the switching points, with a poor resulting comfort. Our
approach is based on the use of segments of clothoid as
geometric primitives. Such curves are arguably the outcome
of our optimal control problem for our non-holonomic
model. Moreover, using the semi-analytic solution proposed
in [23], such a solution can be found very efficiently. In this
paper, we show the application of this algorithm by using
both the waypoints generated by RRT∗ and by the Dijkstra
algorithm [9].

The paper is organised as follows. Section II describes the
platform model, the comfort indices and the problem to be
solved. Section III presents the model formulated in curvi-
linear coordinates and details the proposed solution, which is
finally presented with simulation comparisons in Section IV.
Conclusions draw the reader attention to the advantages of
the proposed method and to the future developments and
extensions.

II. MODELLING AND PROBLEM STATEMENT

The use of robotic platforms to help older adults navigate
in complex environments is commonly regarded as an ef-
fective means to extend their mobility and, ultimately, to
improve their health conditions. These assistive platforms
aims at offering several types of cognitive and physical
support, such as navigation. The basic idea is to endow a
classic physical support system, such as a standard rollator
or a wheelchair, with navigation capability. From a strict
control view-point, the large majority of these mechanical
platforms can be seen as unicycle–like or car–like vehicles.
The objective of this section is to reduce this class of
support systems to a single model, to derive a suitable set of
discomfort indices to be minimised and to formally derive
the optimal problem at hand.

A. Platform Model

With reference to Figure 1, let 〈W 〉 =
{Ow, Xw, Yw, Zw} be a fixed right-handed reference
frame, whose plane Π = Xw × Yw is the plane of
motion of the vehicle, Zw pointing outwards the plane
Π and let Ow be the origin of the reference frame. Let
x = [x, y, θ]T ∈ R2 × S be the kinematic configuration of
the platform, where (x, y) are the coordinates of the mid–
point of the rear wheels axle in Π and θ is the orientation
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Fig. 1. The reference system for the trajectory planning with clothoidal
elements.

of the vehicle w.r.t. the Xw axis (see Fig. 1). Assume that
the kinematic model of the mechanical platform can be
assimilated to a unicycle–like vehicle, described byẋẏ

θ̇

 =

v cos(θ)
v sin(θ)
ω

 (1)

where v and ω are the forward and the angular velocities.
As mentioned in the Introduction, for assistive robots, the

accelerations and jerk experienced by the user are determined
by the geometry of the path to follow, which needs to have
continuous curvature [20]. Since the unicycle model in (1)
does not satisfy this requirement, we propose a dynamic
extension of the unicycle model, whose kinematic ODEs in
the cartesian xy-coordinates are given by:

ẋ
ẏ

θ̇
˙̄δ

 =


cos(θ)
sin(θ)
δ̄
0

 v +


0
0
0
1

 ω̄, (2)

where δ̄ can be interpreted as the steering angle and ω̄ its
velocity.

The same model can also be applied if our vehicle is
natively a car–like vehicle with rear traction, described by

ẋ
ẏ

θ̇

δ̇

 =


cos(θ)
sin(θ)

tan(δ)/l
0

 v +


0
0
0
1

ωδ, (3)

where δ is the actual steering angle, ωδ is the normalised
angular velocity of the steering wheel and l > 0 is the
wheelbase. In this case, the kinematic model (3) can be easily
reduced to the model (2) by using the auxiliary control input

ω̄ =
(
δ2 + 1

)
ωδ,

and assuming that tan(δ) ≈ δ̄ (see [23], [27]).
Model (2), which is the baseline for our developments,

deserves some additional discussion. First, according to [26],



the locomotion trajectories of human beings are well ap-
proximated by the optimal solution of (2), the claim being
validated by the analysis of a large number of recorded tra-
jectories of groups of people moving in a real environment.
Secondly, [27] shows that the car-like time optimal trajectory
is given by a sequence of clothoids (depicted in Section III)
whenever the velocity v is considered constant, while [23]
shows that even with a varying velocity v, the curvature of
the path for model (2) can be safely approximated with a
piecewise linear curvature, which corresponds to a clothoid
or to a sequence of clothoids (see Figure 1).

B. Comfort

The goal-directed locomotion analysis of humans con-
sidering different sensory inputs, for example visual or
vestibular, and the interaction between the head and the
torso or the eyes and the limbs has received a constant
attention. However, only recently has a deep understanding
of the human trajectories become a relevant research issue.
An important research direction is to seek the functional that
a person optimises when she walks and the related suitable
dynamic system to describe it. While convincing results on
the latter problem are available in the form of a system of
differential equations that governs the human locomotion, the
optimised functional is much less obvious.

Using model (2), [26] shows that the longitudinal velocity
can be considered constant for a human navigation task
and that the functional optimised along the trajectories is
the minimum square of the jerk. The jerk is defined as
the derivative of the acceleration and seems to match the
experimental evidences very satisfactorily. The expression
of the jerk in terms of the velocity v and the curvature k
is j = v2k̇. For the optimal curve, i.e., the clothoid, the
curvature is a linear function of the arc-length s, and is
expressed by k(s) = κ + κ′s, for two real coefficients κ
and κ′ = dκ/ds. Thus we specialise the expression of the
jerk combining the information of the curvature, which yields
j = v2κ′. By assuming the velocity to be constant, according
to [26], we can consider as a measure of the trajectory jerk
the square of κ′. As a consequence, a possible cost index that
can be considered for the human comfort is the minimisation
of the jerk, i.e.

T1 = f1(κ′2),

where f1(·) is a suitable function to be defined. While the
jerk is obviously relevant, other comfort indices could be
considered as well. From the previous analysis, a minimi-
sation of the overall curvature can also be a suitable cost
index to be minimised to increase the comfort, which can be
denoted as:

T2 = f2(κ, κ′).

Finally, according to [20], the minimisation of the path length
could be considered as a relevant comfort index, i.e.

T3 = f3(κ, κ′),

where T3 is equal to the time optimal path, the velocity v
being assumed constant.

C. Problem Formulation

We are now in condition to produce a formal statement of
the problem addressed in the paper. Given a path described
by a sequence of waypoints in the selected environment,
interpolate them with a clothoid spline with continuous
curvature that minimises the selected cost index (i.e., T1,
T2 or T3).

The sequence of waypoints points may be obtained with
various methods, such as Dijkstra [9] and A∗ [18] on quad-
trees decompositions [8] or using RRT∗ [11]. The main point
of this choice is that the proposed method can compute a non
smooth path very quickly, thus they are very suitable in the
case of dynamic environments or socially aware navigation.
Nevertheless, the paths thus synthesised are given only by a
sequence of points, while a smooth trajectory that minimises
a discomfort index is instead necessary.

III. PROPOSED SOLUTION

The curves that can be obtained by the kinematic model (2)
are clothoids, hence we fit a clothoid spline through the given
sequence of waypoints. A clothoid arc can be represented
as a parametric function of the arc-length s via the Fresnel
Integrals [28], and is characterised by six real parameters:
(x0, y0), the initial point, θ0, the initial angle, κ, κ′ the
curvatures and the length L. The space coordinates of a point
on the clothoid at arc-length s, the corresponding angle and
curvature are given by:

x(s) = x0 +

∫ s

0

cos

(
1

2
κ′t2 + κt+ θ0

)
dt (4)

y(s) = y0 +

∫ s

0

sin

(
1

2
κ′t2 + κt+ θ0

)
dt (5)

θ(s) =
1

2
κ′s2 + κs+ θ0, (6)

k(s) = κ′s+ κ. (7)

A useful mode to compute a clothoid is to use the Fresnel
Generalised Integrals (FGI), which are defined as follows:

Xj(a, b, c) =

∫ 1

0

τ j cos
(a

2
τ2 + bτ + c

)
dτ,

Yj(a, b, c) =

∫ 1

0

τ j sin
(a

2
τ2 + bτ + c

)
dτ,

which can be plugged into (4) and (5) leading to:

x(s) = x0 + sX0(s2κ′, sκ, θi)

y(s) = x0 + s Y0(s2κ′, sκ, θi).

A clothoid spline is a C2 curve whose curvature is a
continuous piecewise linear function of the arc-length, i.e.,
a sequence of n clothoids. Such a curve C is given by
a finite collection of real parameters 0 = s0 < s1 <
. . . < sn and (pi, θi, κi, κ

′
i) with pi = (xi, yi) ∈ R2 and

i = 0, 1, . . . , n−1. For each i, C is a clothoid over [si, si+1].
A C2 spline has the parameters that satisfy the following



continuity conditions between two consecutive segments i
and i+ 1:

Hi,0 = xi + LiX0

(
κ′iL

2
i , κiLi, θi

)
− xi+1 = 0,

Hi,1 = yi + LiY0
(
κ′iL

2
i , κiLi, θi

)
− yi+1 = 0,

Hi,2 =
1

2
κ′iL

2
i + κiLi + θi − θi+1 = 0,

Hi,3 = κ′iLi + κi − κi+1 = 0,

(8)

where Li = si+1 − si > 0 and i = 0, 1, . . . , n − 1. The
first two conditions mean that segments are joined, the third
condition implies equality of the tangent at the node, the
last condition is the curvature continuity. It is convenient to
collect all the constraints (8) in vector form, therefore we
introduce the function Hi(θi, κi, κ

′
i, Li, θi+1, κi+1) = 0 ∈

R4 for i = 0, 1, . . . , n−1, which represents a system of four
equations in six unknowns. As a consequence, the nonlinear
system of constraints (8) is not completely determined and
this opens to the possibility of minimising different cost func-
tionals. We use the solution of the G1 Hermite Interpolation
Problem with clothoids presented in [28] that allows to solve
the first three equations of (8), and reduces the previous
nonlinear system from 4 to 1 equation per clothoid segment.
The G1 algorithm takes as input the initial (xi, yi, θi) and
final (xi+1, yi+1, θi+1) points and angles and computes the
i–th clothoid curvature parameters κi, κ′i and its length Li.
Since the trajectory is specified by a sequence of fixed points,
by changing the unknown angles θi and θi+1 it is possible
to ensure continuity between the clothoid curvature of the
previous i − 1–th clothoid segment and the i–th clothoid.
This leads to computationally efficient solutions.

We are now in a position to better clarify the comfort
indices presented in Section II-B. We are interested in
three different functionals Tj(θ0, θ1, . . . , θn), j = 1, 2, 3,
depending only on the unknown angles θi that are:
• Minimise the jerk, which is, in this case, equivalent to

the minimisation of the variation of the curvature:

T1 =

n−1∑
i=0

κ′i(θi, θi+1)2; (9)

• Minimise the integral of the curvature squared,

T2 =

n−1∑
i=0

∫ Li

0

(κi(θi, θi+1) + sκ′i(θi, θi+1))2 ds (10)

• Minimise the total length of the curve:

T3 =

n−1∑
i=0

Li(θi, θi+1). (11)

Each functional (9), (10), (11) with the constraints (8)
defines an optimal problem

Minimise Tj(θ0, θ1, . . . , θN )

Subject to Hi(θi, κi, κ
′
i, Li, θi+1, κi+1) = 0.

where j = 1, 2, 3 and i = 0, . . . , n−1, that can be efficiently
solved using NonLinear Programming (NLP). Notice that

due to the periodicity of the involved trigonometric func-
tions there can be many local minima. This correspond to
(undesired) loops in the trajectory that can be avoided with
the provided right guess for the NLP solver. An effective
way to compute the NLP solution is to use the software
IPOPT [29], that requires the derivatives of the target and of
the constraints (i.e., gradient and Jacobian). This has been
done by analytically differentiating the equations of the G1

algorithm, i.e., the derivative with respect to the angles θi and
θi+1. For space limits, we omit this analytic computation.
In [28] was proved existence and uniqueness of the function
κ′i(θi, θi+1) in the appropriate range angle. Limiting the
angles θi to closed intervals, problems Tj(θ0, θ1, . . . , θn) are
minimisations of smooth functions on a compact set, thus the
solution always exists.

A. Path feasibility

Once the clothoid spline trajectory passing through the
set of planned points is synthesised, its feasibility, i.e., the
fact that is confined in the free space, has to be carefully
considered. The obstacles are assumed to be described by
clothoid arcs as well. This assumption is very mild in indoor
environments, since straight line segments and arc of circles
are clothoids. To check if a clothoid intersects an obstacle,
we segment a clothoid, described by the above parameters,
on the basis of the travelled space s using segments of angle
width at most π/2. Each clothoid arc has at most one change
of sign in the curvature, for s = −κi/κ′i, if this points falls
into the interval of the definition of the arc, then we cut the
clothoid there in order to have two segments with constant
sign curvature. Notice that if both κi = κ′i = 0, the clothoid
boils down to a straight line, while if only κ′i = 0 the clothoid
is an arc of circle. The next step of the segmentation is to
divide the previously obtained arcs in equal intervals such
that the travelled angle π/2. The idea is to segment the
clothoid and the obstacles on the basis of their curvature
and then inscribe each portion in a triangle (see Figure 2
for a visual reference). To this end, given the i–th clothoid,
we identify the initial point with Pi,0 , (xi,0, yi,0), the
final point with Pi,1 , (xi,1, yi,1) at abscissa s?, and we
show that the third vertex Pi,2 , (xi,2, yi,2) of the triangle
Pi,0Pi,1Pi,2 is given by

Pi,2 =

(
− q0 − q1
m0 −m1

,
m0q1 −m1q0
m0 −m1

)
, (12)

where m0 = tan(θi,0), q0 = yi,0 − m0xi,0, m1 =
tan(θ(s?)), q1 = yi,1 − m1xi,1. The following Theorem
ensures that each clothoid can be inscribed in a triangle.

Theorem 1: Consider the clothoid segment obtained as
described above, that is, a clothoid of parameters κi, κ′i,
θi of length Li such that the curvature has constant sign on
the interval (0, Li) and the variation of the angle θ(s) is less
than π/2, i.e. θ(Li) − θ(0) ≤ π/2. Then all the clothoid is
contained in the triangle Pi,0Pi,1Pi,2.
The proof of the theorem, which is based on purely geometric
arguments, is not reported for the sake of brevity.
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Fig. 2. An example of segmentation with triangles for an admissible (solid)
and an inadmissible (dashed) trajectory. The thick dashed lines represents
the walls of a portion of a corridor, segmented with triangles as well.

In order to increase the computation performance, the
tree of the triangles is built hierarchically using axis-aligned
bounding boxes. Each triangle is inscribed in a rectangle
with the sides aligned with the axes, and the tree is built
recursively, with a top-down method. From a list of such
rectangles, the root of the tree is defined as the bounding box
containing all the rectangles, then we split the root rectangle
at the midpoint of the longest side creating the first two
branches of the tree and so on. The collision is then detected
computing a standard polygon intersection. In the case of
a collision, we simply resample some points of the given
sequence and repeat the trajectory construction process.

IV. RESULTS

In this section we propose paths synthesis on the map of
the Department of Information Engineering and Computer
Science of the University of Trento. The map of the building
is represented by a set of polygons corresponding to obstacles
and walls. To avoid paths passing too close to these polygons,
an offset with a fixed size is generated around them.

The sequence of waypoints joining source and destination
has been generated using two different algorithms. The first is
based on the decomposition of the map into the well known
quad-tree cells [8]. Cells on the boundary between the free
space and the obstacles are recursively subdivided into four
subcells, until their size is below a fixed resolution parameter.
A graph representing free adjacent cells is built, and the
shortest path between two nodes is found using the Dijkstra’s
algorithm [9]. The second algorithm is the Informed RRT∗

(I-RRT∗) [30], a modified version of the RRT∗ algorithm
where the sampling space for feasible points is reduced to
an ellipse to speed up the computation. For each sampled
point, the corresponding segment is added to the tree only if
it is collision free, where the collision is checked using the
solution presented in Section III-A. The sequence of points
constituting the plan obtained with any of the two is then
further processed by removing redundant points aligned on
straight lines, and inserting some points before and after each
curve, in order to add degrees of freedom for the clothoid
spline in the close proximity of a change of direction.

RRT*
Dijkstra

Path 2

Path 1

x[m]

y[m]

10m

Fig. 3. Comparison of clothoid paths generated with I-RRT∗ and Dijkstra’s
algorithm on the map of the Department of Information Engineering and
Computer Science of the University of Trento.

TABLE I
COMPARISON OF DIFFERENT DISCOMFORT INDICES AND PLANNING

ALGORITHMS ON THE TWO DIFFERENT PATHS OF FIGURE 3.

I-RRT∗ Dijkstra
Target Time [s] Length [m] Target Time [s] Length [m]

Path1
T1 0.002 0.90 67.75 4.52 2.39 69.24
T2 1.00 1.19 67.66 5.42 2.27 68.46
T3 67.66 1.10 67.66 68.44 2.16 68.44

Path2
T1 0.19 2.87 116.54 77.79 8.78 121.35
T2 1.57 2.89 116.44 25.22 8.20 121.33
T3 116.43 2.76 116.43 121.33 8.78 121.33

Figure 3 reports the paths generated using the Dijkstra’s
algorithm and the I-RRT∗ minimising the T1 discomfort
index (minimum jerk trajectories). The solution with Dijk-
stra’s algorithm looks less natural with respect to the paths
generated using I-RRT∗. This is due both to the discrete
set of configurations available and to the particular structure
of quad-trees, having a higher number of cells along the
boundaries of the obstacles. For a quantitative comparison
between the different solutions, Table I reports the discomfort
index target value, the computation time and the path length
for all of the three discomfort indices reported and the two
sample paths reported in Figure 3. The solution based on
I-RRT∗ is the one with the best perfromance for all cases.

Figures 4-(a) and 5-(a) show the curvature of the paths
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Fig. 4. (a): Plot of the curvatures for Path 1 of Figure 3 generated with
I-RRT∗ for the different discomfort indices. (b): Path 1 with I-RRT∗ and
elastic bands smoothing for clothoid trajectories (target T1) or cubic splines.

interpolated with the three different cost functionals. The
curvatures are overlapping almost everywhere over the path,
implying that the constraints imposed by the curvature con-
tinuity dominates the path synthesis, except for the initial
and the final part of the path. Indeed, the initial and the
final curvature are 0 when the adopted functional is T2
(overall curvature minimisation). Independently from the
chosen functional, the range of values of the curvature
is much higher for paths generated using Dijkstra, which
provides an insight for the results reported in Table I.

The method here proposed has been further compared with
a quite popular solution in the literature, which is based on
the application of the elastic bands (El.B.) [17] to smooth
the path, make it more compact and to remove redundant
points. This approach is based on the concept of bubbles
of free space around discrete configurations composing the
path (provided by either Dijkstra’s algorithm or I-RRT∗),
which are moved away from obstacles and toward each other
(similarly to an elastic band), by means of virtual forces. The
obtained points are then usually interpolated with standard
cubic splines. Table II reports a comparison beween the
previous clothoid trajectories (No El.B.-T1) with El.B. with
cubics for Path 1 of Figure 3 minimising the trajectory jerk
(T1 discomfort index). It can be seen that the solution with
El.B. interpolated with cubics is faster than No El.B.-T1,
but it results into higher lengths and into a much higher
discomfort. Albeit a quantitative analysis for the discomfort
cannot be easily computed and to prove the flexibility of the
proposed approach, the higher discomfort is shown applying
the proposed clothoid trajectory generator to the El.B. points
(El.B.-T1). Figures 4-(b) and 5-(b) reports a comparison
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Fig. 5. (a): Plot of the curvatures for Path 1 of Figure 3 generated with the
Dijkstra’s algorithm for the different discomfort indices. (b): Path 1 with
the Dijkstra’s algorithm and elastic bands smoothing for clothoid trajectories
(target T1) or cubic splines.

TABLE II
COMPARISON OF THE RESULTS WITH AND WITHOUT ELASTIC BANDS

FOR PATH 1 AND THE MINIMISATION OF THE JERK T1 , USING BOTH

CLOTHOID SPLINES WITH CURVATURE CONTINUITY AND CUBIC SPLINES.

I-RRT∗ Dijkstra
Target Time [s] Length [m] Target Time [s] Length [m]

No El.B.-T1 0.002 0.90 67.75 4.52 2.39 69.24
El.B.-cubics − 0.21 68.54 − 0.305 69.43
El.B.-T1 3.30 12.67 65.48 10.26 21.31 65.37

of the curvature for the El.B. with cubics and with the
clothoids for both the Dijkstra’s algorithm and the I-RRT∗.
It can be seen how El.B.-T1 produces lower discomfort
than the cubic interpolation, that is however higher than
the original solution (see Table II). Interestingly, El.B.-T1
produces shorter paths than No El.B.-T1.

The proposed solution is reported in pseudo-code in Al-
gorithm 1.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have shown a path panning solution for
mobile robots used for navigation assistance for older adults
and disabled users. We have used a two tier technique, in
which a set of waypoints is first generated using standard
algorithms in the literature, and then an optimal path is found
optimising the user comfort. The latter goal is achieved by
using a nonholonomic car–like mode that naturally generates
smooth curves (segments of clothoids). The model is used
in the context of an optimal control problem where the cost
functional can be related to several parameters expressing
different dimensions of the user comfort. In the paper we



Algorithm 1: Generate a spline of clothoids from a given
starting position to a given goal using the specified cost

Data: map, start, goal, target
Result: Smooth path from start to goal
function GeneratePath

map ←processMap(map)
switch algorithm do

case DIJKSTRA do
quadtree ←genQuadtree(map)
graph ←genGraph(quadtree)
path ←dijkstra(graph, start, goal)

end
case RRTSTAR do

path ←rrtStar(map, start, goal)
end

end
if elasticBand then path ←smoothElasticBand(path) ;
else path ←uniformPoints(path) ;
return ClothoidInterp(path, target)

end

have shown several combination of this solution with differ-
ent algorithms that generate the waypoints.

Much is left for future extensions of this work. A first
possibility is to relax the constraint that the path touches the
waypoints, and allow for the possibility of small deviation
using a least square approximation. Another line of research
can be the combination of our path planning solution with
different algorithms for the generation of the waypoints than
the ones considered here. Finally, an ambitious direction
could be solving the waypoint generation and the optimal
path planning problems at the same time. This possibility
holds the promise to further improve the optimal value of
the solution and, hence, the perceived comfort.
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