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Abstract— We consider the problem of self-localisation for
a mobile robot in an environment with a requested level of
accuracy. The robot moves in a known environment following
typical trajectories, which can be characterised in statistical
terms. One of the main drivers of this paper is its application
to assistive robots guiding senior or impaired users in shopping
centres or in other public spaces. To localise itself the robot
uses onboard sensors such as encoders and inertial platforms.
The level of noise in these sensors and the lack of absolute
measurements determines a steady growth of the uncertainty
on its position. To alleviate the problem, we assume the presence
of a number of visual markers deployed in the environment.
Whenever the robot comes across one of these sensors, the
uncertainty on its position is reset. In the paper, we show a
methodology to minimise the number of these sensors and to
select their position so that the uncertainty is never worse than
a given target threshold with an assigned probability.

I. INTRODUCTION

In its general terms the problem we address in this paper is
described as follows. A set of robots of the same kind move
in a known indoor environment and their motion is observed
and recorded. Such robots rely on a localisation mechanism
combining their on-board sensors with occasional readings of
landmarks deployed in the environment at known positions.
The on-board sensing system comprises wheel encoders and
an IMU (i.e., accelerometers and gyroscopes). As each robot
moves in the environment, the dead-reckoning integration
only based on on-board sensors accumulates uncertainty
on the robot absolute position [1], [2], which is reduced
every time the robot detects these landmarks. Since the
landmark infrastructure is expensive to deploy and maintain,
we have strong motivations to find a solution to the following
problem: find the minimum number of visual markers and
identify their optimal positioning so that the uncertainty
accumulated by the robots remains below a threshold with a
given probability.

Several instances of this problem occur in different appli-
cation domains. The specific motivation of our paper has to
be sought in the European ACANTO research project [3].
The goal of this project is to develop a robotic walking
assistant (the FriWalk) to help older adults with mild mobility
problems navigate and use complex public environments.
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Key to a successful fulfilment of the robot tasks is its accurate
localisation within the environment [4], [5]. Since the robot
is chiefly targeted at indoor applications, GPS localisation
is hardly a viable solution. For this reason localisation is
implemented using a combination of sensors on board of the
robot with external markers such as QR codes [6]. For the
sake of completeness, we give in the paper a description
of the ACANTO specific case study, but the techniques
developed here could easily be applied to other robotic
systems (e.g., mobile robots used for transportation in an
industrial compound). We will use the term “target” to refer
to the robot that we need to localise.

An overview of the approach used in this paper is now
proposed. We start from a collection of data on the tra-
jectories followed by the target in the environment. Using
this information, we derive a stochastic abstraction that
reproduces the trajectories with a reasonable approximation.
A stochastic abstraction is, in this context, a discrete–
time Markov chain, in which states are associated with
the “typical” locations visited by the target, and transitions
describe the motion between two locations resulting from the
observed trajectories and are annotated with a probability
accounting for the frequency with which the transition is
observed. The use of this type of stochastic abstractions is
frequent in the literature [7], [8], [9]. In our case, a transition
is also associated with a level of uncertainty, which accounts
for the loss of localisation accuracy incurred in moving
between start and end locations without using landmark
information. In the paper, we show how to cast the problem
of finding the minimum number of QR markers and their
optimal position into the framework of mixed binary linear
programming (MBLP). An important theoretical result of the
paper is that the problem can be addressed with a MBLP of
limited size even in the presence of cyclic paths.

A. Related work

The problem of sensor placement for localisation has been
studied in the literature in the last two decades with particular
attention placed on active sensing systems [10], [11]. While
some of the solutions proposed consider the active sensors
as moving agents in the environment [12], [13], the majority
of the solutions refer to a static deployment.

The placement of the markers in an environment in a
framework similar to the one presented was first addressed
by Nazemzadeh et al. [6], [14], with a sub-optimal solution
derived for the placement of markers on fixed positions of a
regular grid. The objective of the placement was simply to
find the minimal distance between two nodes in the grid that
guarantees a specified level of accuracy. Very similar are the
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ideas proposed by Beinhofer et al. [15], who use linearised
dynamics to find the minimal distance between the markers
that satisfies the application requirements with a good con-
fidence. In this paper we take into explicit consideration the
statistic profile of the motion of the target in the environment.
This prevents us from wasting a QR marker on an area that
is never (or very infrequently) visited. Moreover, our use
of a discrete stochastic abstraction decouples the problem of
choosing the candidate location (which are not constrained to
be on a grid) for the nodes from the optimisation algorithm.

An appealing direction is human-aware robot plan-
ning [16], [17], [18]. Indeed, the use of graph abstractions is
very frequent in algorithmic solutions for people tracking in
large indoor environments. The environment is broken down
into points of interest (POI) using empirical observations
and learning algorithms. The POI are usually modeled as
nodes on the graph, where the arc represent the typical paths
joining two points of interest. The nodes are often called
sub-goals, with the goal being represented by the long-term
target position which is reached through a sequence of sub-
goals. A description of this kind, where the graph topology
is from statistical data of pedestrian motion is presented by
Kuipers et al.[19]: the topological nodes represent physical
point where humans take decisions. In a different view, more
grounded to robot localisation, identifies decision points as
places where humans usually stop [7], [8]. A stochastic ab-
straction similar to the one adopted in this paper is proposed
by Burgard et al. [9], who model the navigation behaviour of
humans using a probability distribution over the trajectories
and generates a graph of nodes with associated probabilities
(essentially a discrete-time Markov chain). A similar idea is
by Kirchner et al. [20], who champion the use of observed
position trace and environmental data into a probabilistic
framework for path planning. We have just named a few
examples of derivation of stochastic abstractions that can be
readily treated by our optimisation framework.

A more direct link with the problem of optimal sensor
placement can be found in the work of Lin et al. [21], who
apply active sensing to the problem of intruder detection.
Contrary to our work, the authors do not consider neither the
problem of uncertainty growth, typical of self localisation
with dead–reckoning, nor the probability of detecting the
target. Another related solution is proposed by Jourdan et
al. [22] that tackles the optimal sensor placement for ranging
sensors. Even though the problem is related to the one
proposed here, the objective of their solution is to find the
best sensor locations in order for the target to be always in
view from at least two sensors.

II. PROBLEM DESCRIPTION

Robot localisation usually relies on the combination of two
types of complementary techniques: dead reckoning (for ego
motion) and measurements of absolute position and heading
(from external sources or detecting environmental markers).
The rationale underlying the proposed approach is related to
the features (and the limitations) of different kinds of indoor
localisation techniques available in the ACANTO project

context, nevertheless the basic concepts are of general appli-
cability. The dead reckoning solutions are fast and generally
require low-cost sensors, thus enabling high-rate position
tracking without the need for infrastructures in the environ-
ment. However, the initial values of heading and position
must be known, because they are unobservable. Moreover,
the positioning uncertainty tends to increase as the travelled
distance grows. The problems above can be addressed if
accurate and absolute heading and position measurements
are used to adjust occasionally the results provided by dead
reckoning techniques. However, such absolute measurements
require some external system or infrastructure able to esti-
mate the distance/orientation between the robot and a set of
known reference points. Since the GPS signals can be hardly
received inside buildings and the wireless ranging techniques
suffer from poor accuracy indoors, alternative solutions with
a similar function, but on a local scale, have to be devised.
General essential requirements for the proper combination
of dead reckoning and absolute positioning techniques are:
low deployment costs, scalability, robustness to unexpected
events (e.g. obstacles or other moving targets) and, of course,
adequate accuracy for the intended application. For the aims
of ACANTO, positioning uncertainty must be kept below
a stringent target value (i.e. some tens of cm) with a high
level of confidence. To achieve this goal, using sensors
for absolute position and heading estimation with a limited
reading range can be advantageous, since this choice prevents
to incur ambiguous conditions and interferences due to the
simultaneous detection of multiple reference points. Also, a
limited reading range provides an upper bound to distance
measurement uncertainty. For such reasons, the absolute
positioning approach proposed in ACANTO relies on both
odometry and a vision system detecting one of the Quick
Response (QR) codes stuck on the floor (or on the ceiling)
of the chosen environment. A qualitative overview of the
proposed approach is sketched in Fig. 1. This solution is
effective for a variety of reasons. First of all, each QR
code can be easily and univocally associated with a triple
of values (x, y, θ) denoting the planar coordinates of the
detected landmark on a given map and its orientation with
respect to a known direction. Second, several standard and
well-established algorithms, libraries and software tools exist
to detect QR codes and the distance between the camera and
one of them. Third, the detection range (even if strongly
dependent on the size and the resolution of the codes) can
hardly exceed 2 m if the side of the QR code is in the order of
a few tens of cm. Third, as discussed in a different paper [23]
QR codes can be arranged in geometric configurations such
that a robot comes always in sight of a marker when moving
between nearby positions. When multiple markers are in
sight, we can easily select the one which is closest to the
robot. Fifth, the cost of a QR code sticker is extremely
low. Nonetheless, deploying many of them in large and
wide rooms can be expensive, time-consuming and with a
significant visual impact. Therefore, a problem that sponta-
neously arises from this scenario is the following: how and
where the QR codes should be placed in order to minimize
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Fig. 1. Qualitative overview of the localisation technique based on the use
of odometry and QR codes detected by a camera.

the total number of landmarks, while meeting the wanted
accuracy boundaries? In this paper, this optimisation problem
is formalised through a stochastic discrete abstraction. The
same abstraction can be also easily applied or adapted to
similar localisation problems where other passive devices
(e.g. RFID tags [6]) are used to adjust robot’s position
estimated through dead reckoning techniques. The core of
the proposed abstraction relies on an oriented graph including
three sets of nodes, i.e. the source nodes S={S1, . . . , SL},
the intermediate nodes V={V1, . . . , VN} and the destination
nodes D = {D1, . . . , DG}. The general properties of such
sets of nodes are shortly summarised below:
• The source and destination nodes can have just outgoing

or incoming edges, respectively;
• Position and heading at both source and destination

nodes are assumed to be known or measured with
negligible uncertainty;

• At time 0, the robot is assumed to be located in any
one of the source nodes with a given probability;

• Every destination node is reachable from at least one
source node;

• Each intermediate node Vi ∈ V represents the position
of one of the possible landmarks to be deployed in
the environment. Therefore, a binary variable b(Vi) is
associated with each node. This variable will be set
equal to 1 if a device is located in Vi or 0 otherwise
(further details on the use and expression of b(Vi) will
be reported in Section III).

• A node Vj will be referred to as a successor of node
Vi for i, j = 1, . . . , N and i 6= j, if the probability ρi,j
that the Vj is visited immediately after Vi (namely in
one step) is larger than zero.

As a consequence of the assumptions above, the resulting
system can be regarded as a discrete–time absorbing Markov
chain. Even though the step duration in this case is not
constant (as it depends on the actual path of the robot)
this is not a issue for the solution of the optimisation

problem considered. Note that the set of graph edges E =
{e1, . . . , eL} includes all the possible transitions between
pairs of successor nodes Vj and Vi with probability ρi,j > 0,
for i, j = 1, . . . , N and i 6= j. In the destination nodes
instead just self-transitions are possible (i.e. their probability
is equal to 1), since they are absorbing states. Of course,
the values of ρi,j depend on various factors, i.e. the model
describing the motion of the robot in the environment, the
reading range of the vision system and the distance between
the landmarks. In the rest of this paper, the two following
assumptions are made:

1) The motion of the robot is based on a random walk
model and it is constrained only by the walls or fixed
obstacles of the room. So no preferential directions are
followed by the robot;

2) The distance between pairs of successor nodes is
slightly larger than the reading range of the vision
system. This implies that the probability that two
successor nodes are physically quite faraway is not
zero.

It is worth emphasising that these assumptions do not affect
the general validity of the model, but they make the example
described in Section IV consistent with the requirements of
the ACANTO project.

A final important remark about the proposed abstraction
concerns with the positioning uncertainty due to dead-
reckoning. In particular, the positioning uncertainty accu-
mulated over the path between successor nodes Vj and Vi
can be described by a random variable ∆i,j . In theory, ∆i,j

is a continuous random variable. However, for the sake of
simplicity and without loss of generality, we can assume that
it is multiple of a “base” quantity ∆ (for instance due to the
minimum resolution of the measurement system). Under this
assumption, the probability density function of each variable
∆i,j can be approximated by a probability mass function
(PMF) Pi,j .

III. OPTIMAL SENSOR PLACEMENT

As discussed in the previous section, our problem is based
on the definition of three sets of nodes: the source nodes
S (cardinality L), the intermediate nodes V (cardinality N )
and the destination nodes D (cardinality G). The transitions
between the nodes are associated with a conditional proba-
bility. If πk ∈ RL+N+M denotes the vector of probabilities
of finding the target in one of the nodes, we can express
the transition across one step using the customary matrix
notation: πk+1 = πkM , where M is the transition matrix.
The initial probability π0 is a vector in which only the
elements associated with the source nodes can have a value
different from 0. In the discussion below, we will also denote
by ρ(Ui, Uj)∆ the uncertainty associated with the transition
from Ui to Uj , where Ui, Uj can be any node in the set
S ∪ V ∪ D and ρ(Ui, Uj) ∈ N is a random variable. We
will make the reasonable assumption that these variables
are independent for different choices of the nodes Ui, Uj

and denote by ΓUi,Uj
(.) the probability mass function of

ρ(Ui, Uj): ΓUi,Uj (d) = Pr [ρ(Ui, Uj) = d]. The values of the
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uncertainty for a node with a sensor will be a value ∆̃ = c∆,
with c being a constant given by the type of sensor we are
using. For the sake of simplicity, we will henceforth imply
the use of the granularity ∆ and talk about the uncertainty
as if it was a natural number.

We can now summarise our definition of discrete abstrac-
tion:

Definition 1: A discrete stochastic abstraction for the sys-
tem is a discrete–time Markov Chain (DTMC) consisting of
a tuple D = {V,S,D, π0,M,G}, where the function G is
a mapping that associates the pair of nodes Ui and Uj with
the PMF ΓUi,Uj (.) of the uncertainty accumulated across the
transition from Ui to Uj .

Each intermediate node Vi is associated with a binary
variable b(Vi) that is 1 if the node is covered by a sensor
and 0 otherwise.

The assignment of a set of boolean variables b(Vi) deter-
mines the evolution of the uncertainty, which is described
at each step k by the PMF pk(j) = Pr

[
∆k = j∆

]
. Our

problem can then be stated in the following terms:

min
∑
b(Vi)

b(Vi) s.t.

H∑
j=0

pk(j) ≥ µ,∀k (1)

In essence, we want to minimise the number of sensors, such
that at all steps the probability of having an uncertainty below
the threshold H∆ is at least µ. In this section, we will see
how to compute pk(j) as a function of b(Vi). This will enable
us to cast the optimisation problem above into the framework
of mixed boolean linear programming [24] via some simple
manipulations. Finally, we will discuss the existence of a
maximum bound K for the step k, such that if the constraints
in (1) are enforced up to K then it is implicitly verified for
all k ≥ K.

A. Computation of the probability mass function pk(j)

In order to explain how the probability terms pk(j) can be
determined, let us consider the very simple graph, consisting
of just 5 nodes, shown in Fig. 2(a). The numbers next
to each edge represent the transition probabilities and the
worst-case uncertainties (between brackets) associated with
each transition. Starting from the single source node, we
can define a Decision Tree (DT), which is a tree that
specifies possible sequences of choice. Each node of the
tree corresponds to a path that can be taken by making a
sequence of choices in traversing the DTMC. Denote by
Tk = {nk,1, nk,2, . . . , } the nodes of the DT at depth k (i.e.,
after k transitions). We introduce two families of functions:
σ(.) and φ(.) that have Tk as domain. σ(nk,h) is the ordered
sequence of k locations traversed by the path from the root
node to the DT node nk,h, and we will denote it by a
sequence of symbols enclosed between angular brackets, e.g.
〈S1, V1, V5, V7, D2〉. φ(nk,h) represent the probability of the
path associated with the node nk,h.

Example 1: If we refer to the example in Figure 2(a), the
corresponding DT is shown in Figure 2(b). For the sake of
clarity, we mark each node with the last location of the
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Fig. 2. (a) Graph example and (b) corresponding Decision Tree (DT).

path it is associated with. After one transition, we have
σ(n1,1) = 〈S, V1〉 and φ(n1,1) = 0.2, σ(n1,2) = 〈S, V2〉
and φ(n1,2) = 0.8. After two transitions, we have σ(n2,1) =
〈S, V1, V4〉 and φ(n2,1) = 0.2× 0.4, σ(n2,2) = 〈S, V1, V3〉
and φ(n2,2) = 0.2×0.6, σ(n2,3) = 〈S, V2 V3〉 and φ(n2,3) =
0.8×0.43, etc. When a transition reaches a destination node,
which by our assumption is associated with a self transition
with probability 1, the same node will be repeated throughout
the next transition with the same probability.

The transition system just introduced governs the evolution
of the PMF pk(j) for each configuration of the vector of
boolean variables b(V1), b(V2), . . . , b(Vn). In the following
discussion, we will use Bi to mean b(Vi) = 1 and Bi to mean
b(Vi) = 0. The logical conjunction of the boolean variables
Bi and Bj will be denoted by Bi ·Bj . Therefore the notation
Bi ·Bj ·Bf stands for: b(Vi) = 1 ∧ b(Vj) = 1 ∧ b(Vf ) = 0.
The initial uncertainty is c for the assumed presence of a
sensor in each source location:

p0(j) = Pr
[
∆0 = j∆

]
= δ(j − c),

where δ(j) denotes the Kronecker delta function: δ(j) = 1
if j = 0, δ(j) = 0 otherwise.

Since each node at level k of the DT represent a possible
path of length k, the probability pk(j) of having uncertainty
j∆ after k steps can be computed by looking at the contri-
bution of all the DT nodes Tk. Let Hk = card(Tk) be the
cardinality of Tk, and Φj(nk,h) be the function computing
the contribution of the nk,h to the probability pk(j), i.e.

pk(j) =

Hk∑
h=1

φ(nk,h)Φj(nk,h), (2)
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therefore, the contribution Φj(nk,h) is weighted by the
probability that the path is actually taken.

We now focus on the computation of Φj(nk,h) as a
function of the variables b(.) for the nodes in the sequence.
We start with the case of linear paths, i.e., paths where each
node occurs once. The possible values of the uncertainty ∆k

accumulated after k steps depend on the last node in the
sequence in which a sensor is placed. If the last element of
σ(nk,h) is a destination node then the uncertainty will be
c for the assumed presence of a sensor. Thereby, Φj(nk,h)
will be 0 for all values j 6= c and 1 for j = c. In the general
case, the sequence σ(nk,h) has length k + 1, but the first
element of the sequence is always a source node and is also
associated with a sensor. Therefore, only the last k elements
are associated with decision variables. Define by V (f)

nk,h , with
f ∈ [1, k], the f th element of this sequence and let B(f)

nk,h its
associated boolean variable. Define the boolean expression

ψ(f)
nk,h

=



B
(f)
nk,h if f = k,

B
(k)
nk,h ·B

(k−1)
nk,h · · ·B

(f+1)
nk,h ·B(f)

nk,h if f ∈ [1, k[,

B
(k)
nk,h ·B

(k−1)
nk,h · · ·B

(1)
nk,h ·B

(0)
nk,h if f = 0.

Whenever ψ
(f)
nk,h evaluates to true the distribution of the

uncertainty will be given by the PMF η
(f)
nk,h(d). If f = k,

this function is simply a Kronecker δ: η(f)nk,h(j) = δ(j − c).
If f is in the range [0, k[ the expression for η(f)nk,h(j) is given
by a convolution:

η(f)nk,h
(j) = δ(j−c)∗Γ

V
(k−1)
nk,h

,V
(k)
nk,h

(j)∗. . .∗Γ
V

(f)
nk,h

,V
(f+1)
nk,h

(j),

where ∗ denotes the convolution, since the overall uncertainty
is given by a sum of independent random variables.

Example 2: Let us consider node n3,3 in Example 1
in Figure 1 and Figure 2, which is associated to the
path σ(n3,3) = 〈S, V1, V3, V5〉. The possible expressions
for the uncertainty with this path for the different truth
assignments of the boolean variables are the following:
c if ψ(3)

n3,3 = B5

(c+ ρ(V3, V5)) if ψ(2)
n3,3 = B5 ·B3

(c+ ρ(V3, V5) + ρ(V1, V3)) if ψ(1)
n3,3 = B5 ·B3 ·B1

(c+ ρ(V3, V5) + ρ(V1, V3) + ρ(S, V1)) if ψ(0)
n3,3 = B5 ·B3 ·B1

Hence, if ψ
(1)
n3,3 is true, the PMF will be η

(1)
n3,3(j) =

δ(j − c) ∗ Γ
V

(2)
nk,h

,V
(3)
nk,h

(j) ∗ Γ
V

(1)
nk,h

,V
(2)
nk,h

(j), which is

η
(1)
n3,3(j) = δ(j − c) ∗ ΓV3,V5

(j) ∗ ΓV1,V3
(j).

From the previous analysis it follows immediately that

Φj(nk,h) =

k∑
f=0

ψ(f)
nk,h

η(f)nk,h
(j),

that substituted in (2) gives the PMF

pk(j) =

Hk∑
h=1

φ(nk,h)

k∑
f=0

ψ(f)
nk,h

η(f)nk,h
(j). (3)

This is a pseudo-boolean expression in which the boolean
literal ψ(f)

nk,h multiplies the expression of the value of the
probability in case it is true. It has to be noted that this
model accounts also for the presence of natural landmarks,
e.g., mapped entities of the environment, that can be used as
already available sensors with associated uncertainty.

The definition of ψ
(·)
nk,h and η

(·)
nk,h has to be slightly

modified to account for cyclic paths. The presence of cyclic
paths has an impact on the computation of ψ(f)

nh,k and of η(f)nh,k

if f ∈ [1, k[. Indeed, if the f th node of σ(nk,h) is present in
the sequence in a position from f + 1 to k, the value of its
associated variable is bound to 0 from its previous occurrence
in the chain. In this case the term ψ

(f)
nh,k is outright skipped

in the computation of Φj(nk,h).

B. Setting up the optimisation problem
We can now use Expression (3) to reformulate the opti-

misation Problem (1) as

min
∑
Bi

Bi

s.t.

H∑
j=0

Hk∑
h=1

φ(nk,h)

k∑
f=0

ψ(f)
nk,h

η(f)nk,h
(j) ≥ µ,∀k (4)

The left hand side of each constraint is a sum of terms, and
each term is a real constant that multiplies the logical product
a the boolean variables ψ(f)

nk,h .
We transform this into a different problem where the

logical products are “linearised”. The first step is to consider
Bi as a numeric value that can be 0 or 1. The second step to
do this is replacing each term ψ

(f)
nk,h with an auxiliary variable

wi, defined over the real numbers. If two different terms
have the same expression, then the same auxiliary variable
is used to replace them. The third step is to insert additional
constraints to enforce the fact that the auxiliary variable can
be 1 or 0 depending on whether the logical expression is true
or not. Consider a variable wi and the term it is associated
with. Let Ai be the index set of asserted variables in the term
and Ni be the index set of negated variables. The constraints
to be inserted are:

wi ≥
∑
j∈Ai

Bj −
∑
j∈Ni

Bj + 1− card(Ai)

wi ≤ Bj , ∀j ∈ Ai

wi ≤ 1−Bj , ∀j ∈ Ni

Example 3: Consider the term B5 ·B3 ·B1 of Example 2
and suppose it is associated with an auxiliary variable w3.
Then the constraints will be:

w3 ≥ B1 −B3 −B5

w3 ≤ B1

w3 ≤ 1−B3

w3 ≤ 1−B5

We can easily see that w3 = 1 if and only if B1 = 1,
B2 = 0 and B3 = 0. By applying this technique, we end
up with a binary linear problem that can be solved by using
any specialised tool (e.g., GLPK, CPLEX).
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C. An upper bound for the verification horizon

If the topology of the graph describing the discrete abstrac-
tion has the structure of a Directed Acyclic Graph (DAG).
Hence, there exists a maximum number K of steps, given
by the diameter of the graph, beyond which all trajectories
started from a source node will have reached a destination
node. Given the presence of a sensor in the destination node,
we have: pk(j) = δ(j− c) for all k ≥ K. Therefore there is
no need to enforce the constraint for values of k greater than
K. If there are cycles in the graph, this is not evidently true
any more. Indeed, some of the trajectories can cycle through
the same nodes again and again potentially forever (although
with a small probability).

We assume that the Markov Chain is such that every node
has at least one path (of arbitrary length) to a destination
node. The destination nodes are associated with a self tran-
sition taken with probability 1. In the jargon of the Markov
Chain this is called an “absorbing state” and a DTMC for
which every node has a path to called an Absorbing Markov
Chain.

It is convenient to adopt a numbering for the states so
that the absorbing states are the last ones in the πk vector.
By doing so the transition matrix M will have the following
form:

M =

 Q R

0 IG

 ,
where Q is a (L+N)× (L+N) matrix and is associated to
all states that are not destinations, IG is the identity matrix
of order G and accounts for the evolution of the system once
it has reached a destination node (i.e., an absorbing state).
The evolution of the system after n steps is given by:

πn = π0M
n = π0

[
Qn (Qn−1 +Qn−2 + . . .+Q+ I)R
0 IG

]
(5)

Using this expression, we are able to state the following
result.

Theorem 1: Consider a discrete stochastic abstraction as
in Definition 1 and assume that from every intermediate node
source and intermediate node there is a path to at least a
destination node. Then there exist a maximum value of K
such that if Pr

[
∆K ≤ H∆

]
≥ µ, then Pr

[
∆k ≤ H∆

]
≥ µ

for all k ≥ K.
Proof: We can use a standard line of reasoning for

Absorbing Markov Chains [25] and write (5) as

πn = π0M
n = π0

[
Qn (I −Q)−1(I −Qn)R
0 IG

]
(6)

By partitioning the vector πn into the sub-vectors π
(1)
k ,

related to the source and intermediate nodes, and π
(2)
k ,

related to the destination nodes, i.e. πk =
[
π
(1)
k π

(2)
k

]
, the

equation (6) can be written as

π(1)
n = π

(1)
0 Qn, (7)

π(2)
n = π

(2)
0 + π

(1)
0 (I −Q)−1(I −Qn)R. (8)

It is easy to see that limn→∞Qn = 0 [25]. Therefore
for n → ∞ the system will converge to a state where
the probability of being in source or intermediate state will
vanish π(1)

n → 0, while the probability of finding the target
in destination states converges to the vector

π(2)
n → π

(2)
0 + π

(1)
0 (I −Q)−1R = π

(1)
0 (I −Q)−1R.

This convergence is monotone. Indeed, if we consider the
evolution of the state across one step, we have: π(2)

k+1 =

π
(2)
k + π

(1)
k R ≥ π(2)

k where the ≥ is applied element wise.
Since all the trajectories converge monotonically in proba-

bility to a node with a sensor (a destination node), the distri-
bution of the pk(j) will approach the Kronecker δ(j−c) and,
hence, there will be a value K such that the Pr

[
∆K ≤ H∆

]
will be greater than µ from that point on.

The result above shows the soundness of the theoretical
foundation of the paper. In essence, it means that the problem
can be correctly set up and solved in finite time. Besides,
given a spectral decomposition of the matrix Q, we can use
the equation (8) to find a close estimate of the value of K for
which the convergence takes place. We omit this discussion
for the sake of brevity.

IV. USE CASE

Many realistic scenarios have been considered in the
testing phase to prove the solution effectiveness and here,
for space limits, we report only a use case of the 200 m2

exposition area “Salone Donatello” of the Bargello National
Museum in Florence, Italy. As reported in Fig. 3, our model
considers the room entrances and exits as source and desti-
nation nodes (hence, L = G = 2) and, additionally, the set
of POIs like paintings and sculptures (marked with pointers).
The room is split into regular squares on a grid, representing
intermediate nodes. Each square covers approximately 3 m2

and there are N = 50 available squares on which the sensor
can be placed. The range and the shape of the area of
detection has been set in order to satisfy these constraints:
• For every position of the robot in our environment at

least one node is in the detection range of the vision
system;

• The Robot is assumed to move freely in the space as
explained in Section II;

• If the robot moves on a diagonal trajectory from a node
to another one of the grid, the sensing system firstly
detects a sensor on the same row or column.

The deployed sensing uncertainties and the ego-motion
uncertainty are supposed to be modelled as in [6].

The Markov chain describing the motion of the vehicle
inside the environment has been generated taking into ac-
count the attractiveness of the destination nodes as well
as the presence of the POI. More in depth, each POI has
been modelled as an attractive potential for the generation
of the node sequences by modifying the probabilities of the
transition matrix M , as exemplified in Fig. 4. This definition
of the attractive potential fields has a close resemblance to
standard robot motion planning algorithms. Even if simulated
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S1 S2

D1

D2

Fig. 3. Map of the “Salone Donatello” of the Bargello National Museum
use case with optimal sensors placement for increasing target uncertainty
of H = 5 (clubs), H = 10 (hearts) and H = 15 (diamonds). In all cases
µ = 95%. Pointers represent the mapped POIs, considered as obstacles.

D1D2

S2

S1

Fig. 4. Points of interest influence on the Markov chain transition matrix
M of the use case of Fig. 3.

data are used for this example, mainly due to the impossi-
bility of accessing real data from the museum, the model
here synthesised is in perfect accordance with widely used
stochastic motion models derived from direct observations,
such as the Social Force Model [26] or the probability–
based cellular automata motion models [27] or the agent–
based probability models [9], [28], and similar Markov chain
motion descriptions have already been synthesised on real
data for robotic applications [29].

A. Optimisation

Once the Markov chain is available, the implemented
tool visits the graph with a mixed approach of breadth
first and depth first search. The level of the depth and the
acceptable threshold of uncertainty H∆ defined in (1) are
input parameters. For each path analysed, the tool computes

H Front-End Paths wi Optimiser Sensors
5 88m 5s 511M 590 5s 10
10 92m 10s 511M 5598 60s 6
15 111m 28s 511M 46801 31m 35s 4

TABLE I
PERFORMANCE ANALYSIS OF THE “SALONE DONATELLO” OF THE

BARGELLO NATIONAL MUSEUM USE CASE.

both the probability of the path φ(nk,h) and the maximum
amount of uncertainty Φj(nk,h) as in (2).

The number of paths increases exponentially with the
number of steps k. For this reason this tool implements an
analysis of the generated auxiliary variables wi in order to
reduce the space complexity. The variable wi represents the
boolean expression ψ(·)

nk,h described in Section III. Each wi

is preprocessed in order to reduce redundancy and memory
usage by combining all of them sharing common variables
in the constraints. After this preprocessing, the data is fed
to the binary linear problem solver, such as GLPK or more
efficient optimisers like CPLEX or GUROBI.

B. Performance and results

The optimisation algorithm determines b(Vi), i =
1, . . . , N , assuming µ = 95% and different values of H∆̄.
All the computations has been performed on a desktop
equipped with a consumer quad core CPU and 16 GByte
of RAM, while the total amount of trajectories, evaluated by
a front-end coded on purpose in C++, is slightly more than
511 · 106. The computation time of this front-end tool and
the GLPK optimiser software for the described example are
reported in Table I, while the optimal position of the sensors
for each target uncertainty H∆ are depicted with different
shapes in Fig. 3.

The number of deployed sensors lowers down from 10
to 4, as expected, when H increases from 5 to 15 (i.e., a
lower accuracy is requested). However, both the front-end
and the optimiser computation times increase with lower
requests in term of uncertainty (being the front-end the more
computational intensive). This is due by the larger number
of paths to be checked (see the number of literals wi). It is
worthwhile to point out that a time limit can be imposed to
the software that in these cases provides a suboptimal but
feasible solution. For instance, for H = 15, the optimiser
reports a suboptimal solution with 5 sensors in less than
10 minutes, one third of the time reported for the optimal 4
sensors.

Finally, the optimal solutions has been fed to an evaluation
tool that verifies the constraints and provides the cumulative
distribution functions of the positioning uncertainty after
optimal placement for each choice of H∆̄. The solution is
computed for a maximum value of k = 22 steps which means
that over the 88% of the trajectories reached a destination
node. This value can be considered as an index of the
likelihood of the results.
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V. CONCLUSIONS

In this paper we have focused on the problem of indoor
localisation of mobile robots in large indoor environments.
The type of robots we target perform the self localisation task
using a combination of on board sensing devices with occa-
sional readings of environmental markers, e.g., visual mark-
ers or RFIDs. The latter give absolute position information
and allow the system to reset its uncertainty within accept-
able boundaries. We have shown a method for the optimal
placement of the markers and for the minimisation of their
number. The idea is based on the introduction of a stochastic
discrete abstraction that describes in probabilistic terms the
trajectories of the robot in the environment observed in the
past executions. The use of this abstraction allows us to set
up a mixed boolean optimisation problem, which finds the
minimal number of markers and their position subject to the
constraint that the uncertainty remains below a target value
with an assigned probability.

The concrete robotic application that motivated our effort
is the self-localisation of a robotic walker, used to support
senior users to navigate and use large public spaces. But, we
believe that the outreach of our results goes far beyond and
applies to all mobile robots that execute repetitive tasks in a
large environments. The main future research directions are
related to the extension to different application scenarios,
to the improvement of the expressiveness of the method
(e.g., by including a probability of sensor detection) and the
development of more efficient solution strategies. Finally, an
extensive collection of data in a real environment leading
to an experimental validation of the work is currently under
way.
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