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Abstract—Indoor positioning often requires detecting and
recognizing ad-hoc landmarks or anchor points with known
coordinates and/or a given orientation within a given reference
frame. Typically, the available kind of sensors and their detection
area determine the landmark features and position. Of course,
an excessive use of landmarks pose serious scalability and cost
issues, whereas, on the other hand, a too-low amount of deployed
landmarks may create areas where agent’s position is hard to
track or localization accuracy drops. In addition, often sensors
are not omni-directional. In this paper, the optimal placement
problem of landmarks detected by sensors with a limited detection
area is addressed in the general case of wide-open, ideally
unbounded, rooms. First, landmarks placement optimization is
performed numerically. Then, a closed-form expression of the
optimal distance between landmarks on a regular pattern is
determined as a function of both the reading range and the
directional properties of the sensor considered. Finally, the perfor-
mances of the chosen placement strategy in more realistic indoor
environments (i.e. consisting of multiple rooms with obstacles
therein) are evaluated through simulations assuming, without loss
of generality, that a wheeled robot equipped with a front camera
adjusts its own position by detecting suitable visual landmarks.

Keywords—Indoor localization, position tracking, landmark
placement, optimization, frameworks for hybrid positioning, per-
formance evaluation.

I. INTRODUCTION

Indoor localization has increasingly gained importance in
a large variety of applications, such as logistics, customers
assistance in public places, industrial robotics and ambient
assisted living (AAL) services. Although infrastructure-free
indoor localization is ideally cheaper and more flexible, it is
usually still not accurate enough when performance require-
ments are demanding. Various indoor localization solutions
have been proposed over the last few years, e.g. based on time-
of-flight (ToF) and/or radio signal strength intensity (RSSI)
measurements [1], [2], detection of radio frequency identifica-
tion (RFID) tags [3], [4], ultrasonic sonars [5], and optical or
vision-based systems [6].

In spite of the significant differences between such sensing
technologies, a common feature to all of them is the need
for deploying appropriate reference devices in the environ-
ment where possible targets are supposed to be localized
and tracked. Usually, such devices (sometimes referred to as
“anchor nodes”, “tags”, “markers” or “landmarks”, depending
on whether they are active or passive and on the kind of

sensing technology adopted) have known coordinates and/or
orientation in a given reference frame. In the rest of this
paper, without loss of generality, it will be assumed that the
landmarks are readable by means of sensors (e.g. cameras or
RFID readers) installed on the agent to be localized. In prin-
ciple, these sensors can also measure the relative position and
orientation between the agent and a detected landmark. While
these relative measurements can definitely improve positioning
accuracy, they are not strictly needed for the purposes of this
paper, which is focused just on where landmarks should be
placed, regardless of how they are actually used by a specific
localization system. Therefore, the analysis described in this
paper is absolutely general. Of course, the number landmarks
in the environment should be as small as possible, while still
providing reliable and accurate localization.

Depending on the application and on the chosen sensing
technology, landmarks can be detected continuously or inter-
mittently. In the former case, the optimal landmark placement
is the one for which, ideally, just one landmark is detected
at every sampling time. In the latter case, the number of
landmarks can be much smaller, thus reducing deployment
complexity and costs. In principle, a localization system should
be also able to track the agent’s position even when no
landmarks are detected [7]. Of course, the landmark placement
problem strongly depends on the detection area of the sensor
in use. In [8] a strip of RFID tags is deployed in such a
way that, in every position, at least one RFID tag lies within
the detection range of the on-board reader. The strip has an
equilateral triangular shape, with the RFID tags being located
in the vertices. In [9] authors show that, in the case of landmark
patterns consisting of equilateral triangles, the maximum side
length is

√
3 times larger than the detection range. However,

other kinds of patterns are also possible, and they can be
composed by up to 8-sided polygons [10]. A complete discus-
sion about the landmark placement over rectangular patterns
in the case of sensors with an omni-directional reading range
is presented in [11]. Beinhofer et al. [12] solved the NP-
hard sensor placement problem analytically assuming to have
predefined robot trajectories. Using observability constraints,
such a deployment strategy has been modified in order to
be robust to missed landmarks, e.g. because of dynamic
obstacles or failures [13]. The main drawback of this solution
is the constraint imposed by the limited number of specific
trajectories.

Some optimal landmark placement strategies have obtained
by solving the so-called “art gallery problem”. In this case,978-1-5090-2425-4/16/$31.00 c© 2016 IEEE



the area of a given environment (i.e. the art gallery) has to
be partitioned into regions, in order to minimize the number
of “guards” (i.e. the landmarks in this case) that can view
every point of each region. This analysis allows to select the
landmarks position ensuring that at every location at least
one landmark can be detected [14]. The simulated annealing
technique is frequently used to solve this kind of prob-
lems [15]. Unfortunately, the placement strategies based on
the “art gallery problem” are effective when the landmarks are
supposed to be active. This fact poses additional deployment
problems, since each landmark has to be properly powered.
Moreover, landmark detection depends not only on the distance
between the sensor and one landmark, but also on their relative
orientation. This happens, for instance, when well-known low-
cost systems, such as simple cameras or ultrasonic sensors,
are employed. However, a similar scenario holds also when
wireless systems with strongly directional antennas are used.

The goal of this paper is to find a general solution to the
landmark placement problem, when the sensor detection area
(SDA) has a limited angular range and the agent’s motion is
not constrained. Assuming to represent the SDA (e.g. the field
of view of a standard RGB-D camera) with a polytope, first an
optimal solution based on numerical techniques is introduced
and discussed. Then, it will be shown that similar results can
be achieved analytically. The proposed approach guarantees
the detection of at least one landmark at every sampling time,
regardless of agent’s trajectory and sensor orientation, provided
that the agent moves in a wide-open, ideally unbounded,
room. In real environments landmark detection cannot be
always guaranteed because of static and dynamic obstacles.
Nonetheless, the probability of landmark detection can be
kept sufficiently large and, more importantly, the localization
uncertainty can be kept bounded, thus paving the way to further
optimization strategies if intermittent landmark observations
can be tolerated.

The rest of the paper is organized as follows. In Section II
the optimal placement problem is formulated and both nu-
merical and analytical solutions are derived. The results of
some simulations confirming the correctness of such solutions
are reported in Section III. Further Monte Carlo simulation
results in both wide-open unbounded rooms and in a realistic
environment (i.e. the premises of the Department of Informa-
tion Engineering and Computer Science of the University of
Trento) are shown in Section IV to evaluate the performances
of optimal placement in a case study, i.e. when a wheeled robot
equipped with a front camera adjusts its own position using
visual landmarks. Finally, Section V concludes the paper and
presents future applications of the proposed solution.

II. OPTIMAL LANDMARKS PLACEMENT

As briefly explained in the Introduction, the purpose of
this paper is to determine the minimum number of landmarks
to be deployed in a given environment so that, for any given
configuration of the sensing system, at least one landmark lies
within the SDA. This problem is often treated in the literature
as a tiling problem, where the vertices of the tiles coincide
with landmarks’ positions. It is known that only three periodic,
monohedral and regular tiling patterns exist in R

2 (namely
over the plane), i.e. triangles, squares and hexagons [16], [17].
Using triangle and square tiles (which are the easiest to deploy
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Fig. 1. Points of an A2 lattice representing the possible landmark positions in
a wide-open, unbounded room. The sensor detection area (SDA) is represented
by the shadowed region inside polytope P .

in practice) the vertices of all polytopes belong to an A2

point lattice and a square point lattice, respectively. Thus, if
the polytope P represents the SDA, the original optimization
problem can be regarded as “the problem of finding whether
the polytope contains a lattice point” for any possible position
and orientation of P [17]. Limiting the analysis to the case of
triangular tiles only (the extension to the square case is similar
and is left for future work), a convenient way to represent
the lattice points on a plane is to assume that one of the
triangle sides is parallel to the Xw axis of the reference frame
〈W 〉 = {Ow, Xw, Yw}, as shown in Fig. 1. If p0,0 = [x0, y0]

T

denotes a given lattice reference point, the coordinates of any
other point of the lattice can be expressed as

pi,j = p0,0 +

[

j d
2 + id
jhd

]

, ∀i, j ∈ Z, (1)

where d, αd = π/6 and hd = d cos(αd) are the side length,
the semi-angle and the height of any equilateral triangle,
respectively. Observe that d is also the distance between every
pair of adjacent landmarks. For the sake of simplicity, but
without loss of generality, in this paper the polytope P defining
the SDA is approximated with an isosceles triangle with a
vertex angle of 2α, α ∈ (0, π/2) and height h (see Figure 1).
Thus, the two equal sides of the triangular SDA have length
r = h/ cos(α). Moreover, if γ denotes the orientation angle
of the SDA with respect to axis Xw, the polytope is defined
as the plane portion

P ,

{

2
∑

i=0

λiqi|
2

∑

i=0

λi = 1, λi ∈ [0, 1] for i = 0, 1, 2

}

, (2)

where q0 = Ow = [0, 0]T ,

q1 = r

[

sin(β + γ)
− cos(β + γ)

]

, q2 = r

[

sin(β − γ)
cos(β − γ)

]

, (3)

are the SDA vertices and β = π/2 − α is the angle between
segment q0q1 and axis Xw when γ = π/2, as shown in Fig. 1.

Notice that, due to the symmetry and periodicity of the
triangular lattice, in order to generate all the possible lattice
positions, it is sufficient to move the reference point p0,0 in
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Fig. 2. Possible landmark positions in the rectangle Rd and corresponding
partitions.

the rectangle Rd with base d and height hd, as pictorially
explained in Fig. 2. Therefore, with reference to the notation
introduced above, the optimal landmarks placement problem
can be formulated as follows, i.e.

Problem 1: Maximize the landmark distance d such that
∀p0,0 ∈ Rd and ∀γ ∈ [0, 2π) there exists at least one pi,j ∈ P
with i, j ∈ Z.

In the following subsections, first a numerical solution to
solve this problem is presented. Then, a closed-form analytical
solution is also derived.

A. Optimal numerical solution

According to Problem 1, a solution should be found
∀p0,0 ∈ Rd. Hence, we can rewrite

p0,0 =

[

x0

y0

]

+

[

kxd
kyhd

]

=

[

x0

y0

]

+

[

kxd
kydc6

]

,

where c6 = cos(π/6) and kx, ky ∈ [0, 1]. The area of Rd as
a single region is shadowed in Fig. 2. Given that [x0, y0]

T is
generic, we can choose [x0, y0]

T = [0, 0]T for simplicity. As
a consequence, it follows from (1) that

pi,j =

[

kxd+ j d
2 + id

kydc6 + jdc6

]

= d

[

1
2 (2kx + j + 2i)

c6(ky + j)

]

. (4)

According to the definition of polytope (2), a point pi,j ∈ P
if and only if ∃λ1, λ2 ∈ [0, 1] such that λ1q1 + λ2q2 = pi,j ,
with λ1 + λ2 ≤ 1. Recalling (3), if we define

Qγ = [q1, q2] = r

[

sin(β + γ) sin(β − γ)
− cos(β + γ) cos(β − γ)

]

, (5)

and Λ = [λ1, λ2]
T , it follows that

QγΛ = pi,j ⇒ Λ = Q−1
γ pi,j , (6)

where the inverse of Qγ always exists since det(Qγ) =
r sin(2β) 6= 0, being r and β larger than 0. Once the Λ values
given by (6) and expressed as a function of the elements of (4)

are compared with the related constraints, it is shown in the
Appendix that the following system of inequalities results































cos(β − γ)

2
(2kx+j+2i)−sin(β−γ)c6(ky+j)≥0,

cos(β + γ)

2
(2kx+j+2i)+sin(β+γ)c6(ky+j)≥0,

d

[

cos(γ)

2
(2kx+j+2i) + sin(γ)c6(ky+j)

]

≤h.

(7)

Therefore, a point pi,j ∈ P if and only if ∃i, j ∈ Z

satisfying (7). Therefore, to solve Problem 1, we have to find
a solution to system (7) for any possible value of variables γ,
kx and ky . Notice that:

1) All the inequalities of (7) are linear in i, j ∈ Z for given
values of γ, kx and ky .

2) Since the coefficients of (7) depend on periodic trigono-
metric functions, just the values of γ in the interval
[0, π/2] should be taken into consideration. This is a
direct consequence of the regular, periodic structure of the
lattice. While the possible values of γ are infinite, being
the range of variation limited and i, j ∈ Z, in practice just
a finite amount of γ values (e.g. chosen with a resolution
of π/40) can be explored to find the optimal solution.

3) Given that the objective of Problem 1 is to maximize d,
the first two inequalities in (7) provide the constraints
to the possible values of i, j ∈ Z, whereas the third
inequality represents the actual cost function to optimize.
By adding the first two inequalities and by using basic
trigonometric functions properties, it can be easily proved

that
cos(γ)

2 (2kx+j+2i)+sin(γ)c6(ky+j) > 0. Therefore,
since cos(γ) ≥ 0, sin(γ) ≥ 0 and kx, ky ∈ [0, 1], it
ensues immediately that the maximum of d for a given
γ (denoted as dγ in the following) is obtained for those
value of i, j ∈ Z minimizing the cost function fγJ , where

fγ =
[

cos(γ) cos(γ)
2 + sin(γ)c6

]

, (8)

and J = [i, j]T .

In light of the previous remarks, we can rewrite the first
two linear inequalities of (7) in a compact, matrix form, i.e.
A1J ≥ B1K1 and A2J ≥ B2K2, respectively, where

A1 =
[

cos(β − γ) cos(β−γ)
2 − sin(β − γ)c6

]

A2 =
[

cos(β + γ) cos(β+γ)
2 + sin(β + γ)c6

]

,

B1 = [− cos(β − γ) sin(β − γ)c6] ,

B2 = [− cos(β + γ) − sin(β + γ)c6]

Note that if K = [kx, ky]
T denotes a vector of generic

coefficients, K1 = [kx1
, ky1

]T and K2 = [kx2
, ky2

]T are the
specific values that, in the worst case, maximize B1K and
B2K, respectively. Therefore, for a given γ ∈ [0, π/2], the
solution i⋆, j⋆ ∈ Z of the following optimal problem

min
i,j

fγJ

s.t. A1J ≥ B1K1,

A2J ≥ B2K2,

i, j ∈ Z,

(9)
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Fig. 3. Pictorial examples of missed landmark detection, when the geomet-
rical constraints d ≤ r (e.g. P1) and d ≤ b (e.g. P2) are not satisfied.

can be used to compute the maximum distance dγ for a given
γ, i.e.

dγ =
2h

cos(γ)(2kx + j⋆ + 2i⋆) + 2 sin(γ)c6(ky + j⋆)
. (10)

It is worthwhile to note that a solution to Problem (9)
always exists since det([AT

1 , A
T
2 ]

T ) = sin(2β)c6 6= 0. Also,
pi⋆,j⋆ ∈ P , ∀kx, ky ∈ [0, 1], determines a single point that
belongs to the SDA ∀p0,0 ∈ Rd. This is clearly an overkill,
since it is sufficient that at least one point belongs to the SDA,
even if this is not the same point ∀kx, ky ∈ [0, 1]. To address
this issue, Rd can be partitioned into smaller sub-regions (i.e.
by bisecting kx and ky iteratively) in order to compute the
optimal pair i⋆, j⋆ ∈ Z for each sub-region (see the Partitioned
region in Fig. 2 for reference). Therefore, if J ⋆ denotes the set
of optimal i⋆, j⋆ pairs of all sub-regions, the optimal distance
between landmarks for a given γ results from

d⋆γ= min
i⋆,j⋆∈J ⋆

2h

cos(γ)(2kx+j⋆+2i⋆)+2 sin(γ)c6(ky+j⋆)
.

(11)
Finally, the optimal solution to Problem 1 is given by

d⋆= min
γ∈[0,π/2]

d⋆γ . (12)

The results of some simulations confirming the validity of the
proposed optimal solution are reported in Section III.

B. Optimal analytical solution

This Section provides an analytical expression of the op-
timal distance between landmarks, when an A2 lattice in a
wide-open unbounded room is considered. Let b = 2r sin(α)
be the SDA maximum width, i.e. the length of the base of
the isosceles triangle P . In order to solve Problem 1, two
geometrical constraints must be satisfied, i.e. d ≤ r and d ≤ b.
Indeed, if these constraints are not met, at least one triple of
values kx, ky and γ exists such that the sensor cannot detect
any landmark (e.g. P1 and P2 in Fig. 3). Let us consider a
virtual sensor with a triangular SDA included into P . Similarly
to (2), the SDA of the virtual sensor is defined as follows, i.e.

Pv,

{

2
∑

i=0

λiq
v
i |

2
∑

i=0

λi = 1, λi ∈ [0, 1] for i = 0, 1, 2

}

,

(13)
where qv0 = q0 and

qv1 = rv
[

sin(β + γ)
− cos(β + γ)

]

, qv2 = rv
[

sin(β − γ)
cos(β − γ)

]

,

H

P

r

vr
v

b
v

b

P

v
R

Fig. 4. The rectangle Rv in front of the FoV Pv .

with rv ≤ r, d ≤ rv and d ≤ bv = 2rv sin(α), in accordance
with the constraints specified above. Let Rv be the rectangle,
with base bv and height H = h−hv = (r−rv) cos(α), which
lies just beyond the SDA of the virtual sensor (see Figure 4
for reference). Observe that, in general, {Pv ∪Rv} ⊆ P . So
{Pv ∪Rv} can be regarded as an inner approximation of poly-
tope P , which becomes increasingly accurate as rv → r. In
light of this approximation, a sub-optimal version of Problem 1
can be formulated as follows, i.e.

Problem 2: Maximize the landmark distance d such that
∀p0,0 ∈ Rd and ∀γ ∈ [0, 2π) there exists at least one pair
i, j ∈ Z with pi,j ∈ {Pv ∪Rv}.

To find an analytical solution to this problem, first of all notice
that max d = min(r, bv), as bv ≤ b. Given that α, b and r are
known parameters of the sensor, but bv is unknown, using
simple geometric arguments, it can be shown that

bv = 2 tan(α)(r cos(α)−H). (14)

Therefore, in order to maximize bv it is sufficient to minimize
H . Let us suppose that, for a given choice of kx, ky and γ,
then pi,j 6∈ Pv for any i, j ∈ Z (otherwise Problem 2 would be
straightforwardly solved). Under this assumption, we need to
have one landmark in Rv . This in turn implies that Rd ⊆ Rv ,
where the areas of Rd and Rv are equal to d · hd and H · bv ,
respectively. Since d ≤ bv , the minimum value of H ensuring
that Rd ⊆ Rv is

H = hd = d

√
3

2
. (15)

Thus, by plugging (15) into (14), it finally results that

d ≤ d† = bv = r
2 sin(α)

1 +
√
3 tan(α)

. (16)

where d† denotes the analytical solution to Problem 2. Notice
that 0 < d† < r, because α ∈ (0, π/2).

III. SIMULATION-BASED VALIDATION OF NUMERICAL

AND ANALYTICAL OPTIMAL SOLUTIONS

In order to confirm that the optimal landmark distances
obtained both numerically and analytically are correct and
converge to the same solution, some meaningful simulations
have been performed. Fig. 5 shows the optimal landmark

distances normalized by r (i.e. d⋆

r and d†

r ) as a function of
the sensor angular semi-range α ∈ (0, π/2). In the numerical
case, three sets of results are reported for different partitions
of Rd (i.e. assuming to find a solution in the entire Rd, in 8
sub-regions and in 64 sub-regions of Rd, respectively). Notice
that as the number of partitions used to compute d⋆ grows,
the sub-optimal numerical values exhibit smaller fluctuations
(due to the finer granularity of the regions explored) and
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numerical results refer to three different partitions of Rd.
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ultimately they converge to the analytical results, as expected.
For the sake of comparison, Fig. 6 reports dual results when
the optimal landmark distance as a function of α ∈ (0, π/2)

is normalized by h (i.e. d⋆

h and d†

h ). Notice that the trend of
the curves in Figs. 5 and 6 is completely different, although
numerical and analytical results are consistent. This is due to
an essential geometric difference in the two cases. In Fig. 5
the SDA triangle is indeed inscribed within a circle of constant
radius r. This implies that as α changes the actual sensor range
h is not fixed, but it reaches a maximum for 2π

9 and then
it decreases as α approaches π

2 . On the contrary, in Fig. 6
the SDA triangle has a constant height h, and the value of
the circle radius r steadily increases with α. As a result, the
normalized optimal landmark distances grow monotonically, as
well. Consider that both situations may occur in real scenarios,
as they depend on the setup of the sensing system (e.g.
camera orientation with respect to the floor). Observe also
that, in both cases, when Rd is partitioned into 64 sub-regions,
analytical and numerical results are hardly distinguishable. For
this reason, only the analytical values will be used in the rest
of this paper.

TABLE I. OPTIMAL LANDMARK DISTANCES (COMPUTED

ANALYTICALLY AND NORMALIZED BY r) AND MINIMUM VALUES OF

FACTOR δ FOR WHICH NO LANDMARK IS DETECTED IN AT LEAST ONE OUT

OF 105 RANDOMLY GENERATED POSITIONS AND ORIENTATIONS OF THE

SENSOR.

α [rad] 0.2 0.4 0.6 0.8 1 1.2 1.4

d
†

r
0.32 0.46 0.53 0.53 0.46 0.35 0.18

δ 1.08 1.02 1.02 1.02 1.02 1.01 1.01

In order to evaluate more clearly to what extent the
estimated landmark distance values are close to the optimal
ones, some Monte Carlo simulations (of 105 runs each for
given values of α) have been performed by randomly changing
sensors’ position and orientation over different lattices of
type A2, in which the distance between landmarks was set
purposely larger than d† by a variable factor δ. Tab. I reports

both the optimal values of d†

r and the minimum values of

factor δ for which if we set d=δ · d†, there exists at least one
configuration of the sensor in which no landmark is detected.
It shows that for very small values of α, d† is slightly far from
the optimal d, e.g. approximately 8% for α = 0.2 rad, but it
tends to the optimal value when α increases.

IV. SIMULATION RESULTS IN A CASE STUDY

In order to evaluate the impact of optimal landmark place-
ment on localization accuracy in a real case study, the results
of some Monte Carlo simulations in two different indoor envi-
ronments are reported in the following, i.e. a large wide-open
room without any obstacle, and a more realistic scenario based
on the map of the Department of Information Engineering
and Computer Science (DISI) of the University of Trento.
In both environments, the trajectories are generated using the
model of the FriWalk, the smart walker developed within the
EU project ACANTO1. The FriWalk (whose dynamic can be
modeled as a unicycle-like vehicle [18]) is equipped with
relative encoders on the rear wheels and a front camera that
measures the walker’s relative position and orientation with
respect to suitable visual landmarks placed on the floor. Each
detected landmark (e.g. a Quick Response code) is assumed
to return not only its own absolute planar coordinates (x, y)
in the chosen reference frame, but also its orientation with
respect to axis Xw. The main parameters of the camera’s SDA
(namely its field of view in the case considered) are: r ≈ 4 m
and α ≈ π/6 rad. Thus, it follows from (16) that d† ≈ 2 m.
The walker position is estimated by fusing odometry data and
camera-based measures by means of an extended Kalman filter
(EKF) [7]. The uncertainty contributions of the two encoders
measuring wheels displacements at each sampling time are
assumed to be uncorrelated, white and normally distributed
with zero mean and variance σ2

∆φ = 4·10−4 rad2. The absolute
camera-based measures of position and orientation are also
assumed to be affected by weakly correlated Gaussian white
noises, with zero mean and variances σ2

x = 16 · 10−4 m2,
σ2
y = 5 · 10−5 m2 and σ2

θ = 10−3 rad2, respectively [7].

A. Wide-open room case

In the ideal case of a wide-open room without obstacles
where an A2 lattice of landmarks is deployed on the floor with

1www.ict-acanto.eu
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Fig. 8. RMS estimation error of robot’s planar Cartesian coordinates and
orientation computed over 200 random trajectories in the case of a wide-open
room with no obstacles.

distances between adjacent landmarks given by (12) or (16),
the front camera of the FriWalk is always able to detect at least
one landmark, regardless of camera’s position and orientation.
To verify this, 200 random-walk trajectories of 180 s each
have been generated within a 10 × 10 m wide-open room.
The results obtained in this case are comparable with those
reported in Tab. I. Indeed, by increasing the distance between
adjacent landmarks by just a few percent with respect to the
optimal value, it may happen that no landmark is detected.
It is worthwhile to note that setting d = d† ensures that at
least one landmark is in view for any position and orientation
of the robot. Therefore, in general, more than one landmark
can be actually detected. Fig. 7 reports the average number
of detected landmarks versus δ, being δ · d† the parametric
distance between adjacent landmarks on the lattice considered.
It is evident that more than 2 landmarks can be detected on
average when d=d†.

Fig. 8 shows the root mean square (RMS) estimation errors
associated with state variables (x, y, θ) as a function of time,
when 200 trajectories are simulated. Observe that all RMS
error curves quickly converge to the respective lower bounds
obtained using the EKF described in [7]. In fact, such lower
bounds can be reached if and only if the optimal landmark
deployment is adopted, i.e. if there is at least one visual
landmark inside the SDA of the camera.
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Fig. 9. Six examples of agents’ trajectories in the premises of the Department
of Information Engineering and Computer Science of the University of Trento.
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position of a detected landmark and its six neighbors over a portion of A2

lattice in the case of a wide-open environment (a) and a room with obstacles
(e.g. walls) (b).

B. Realistic environment

The trajectories in a realistic environment (i.e. the DISI
premises) have been generated using the so-called Social Force
Model (SFM). This provides realistic human-like paths along
with collision avoidance mechanisms [19]. Fig. 9 shows the
DISI map along with six trajectories. While initial position and
final destinations are generated randomly, the main difference
with respect to the case of wide-open room is that now the
optimal landmarks placement is affected by the presence of
obstacles and walls. Anytime a point of the lattice is located in-
side a wall or an obstacle reported in the DISI map, obviously
the corresponding landmark is not available in practice. This
problem can be partially addressed by shifting all landmarks by
a fixed amount until the number of those falling inside walls or
obstacles is minimum. However, while in the wide-open room
case, anytime the camera detects a landmark, any one of its
six neighbors can be detected next [as depicted in Fig. 10(a)],
the presence of walls and obstacles can make the transition
from one landmark to another impossible or much less likely,
e.g. because the trajectory is constrained by a wall, as shown
in Fig. 10(b). This kind of situations may considerably affect
RMS estimation errors even if the landmarks layout is as close
as possible to the optimal one. In order to evaluate the impact
of obstacles on localization accuracy, the RMS errors over
time associated with the estimation of variables (x, y, θ) and



TABLE II. AVERAGE RMS ESTIMATION ERRORS ASSOCIATED WITH

VARIABLES (x, y, θ) FOR DIFFERENT VALUES OF r AND IN THE CASE OF

WIDE-OPEN ROOM AND DISI PREMISES, RESPECTIVELY.

Wide-open room DISI premises

r [m] 1 4 8 1 4 8

RMSEx [cm] 1.5 1.6 1.7 2.2 3.3 4.2

RMSEy [cm] 1.5 1.6 1.7 1.5 2.2 2.9

RMSEθ [mrad] 8.0 8.0 8.0 24.0 25.0 25.0
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Fig. 11. RMS position errors between two subsequent landmark detections as
a function of the percentage of landmarks randomly removed from the optimal
layout.

averaged over 200 trajectories have been computed for three
different values of r (i.e. 1 m, 4 m and 8 m). The corresponding
results are reported in Tab. II. Observe that, in the case of
wide-open room, the SDA size does not affect localization
accuracy significantly, as lattice optimality for a given SDA
is preserved. On the contrary, when walls and obstacles are
present, the RMS position errors tend to increase as the camera
SDA grows. This is due to the fact that the probability of
detecting a landmark decreases from 96% when r = 1 m to
87% when r= 8 m. To emulate and to analyze the effect of
the presence of obstacles more in depth, an increasing number
of landmarks has been removed randomly from the optimal
layout, while recomputing the RMS position errors every time.
Fig. 11 shows the average RMS position error accumulated
along the path between two subsequent landmarks when the
percentage of removed landmarks grows. Notice that the RMS
position error increases as expected, in accordance with the
results reported in Tab. II.

V. CONCLUSIONS

In this paper a landmarks optimal placement strategy for
indoor localization is presented. In particular, assuming to have
i) a regular triangular lattice of landmarks in a wide-open room
and ii) a sensor with a limited detection area (approximated
with a triangle as well), the optimal distance between pairs
of adjacent landmarks is derived both numerically and an-
alytically. Both solutions converge to the same results. The
analytical solution is particularly valuable because it provides
a very simple, closed-form expression, which depends just on
the radial and angular detection ranges of the sensor adopted,
regardless of the specific sensing technology. Therefore, it can
be applied in a multitude of contexts. Also, this result could
be extended to the case of square lattices of landmarks. The

results of various Monte Carlo simulations confirm that, if
no obstacle is present, localization accuracy is limited mainly
by the measurement uncertainty of position and orientation
between the sensor and one of the landmarks. Of course,
in real indoor environments, where walls and obstacles are
present, an ideal optimal layout can be hardly deployed. As
a consequence, just suboptimal results can be achieved, either
because some landmarks could be difficult to detect or because
it could impossible to place them at all. In such conditions, the
longer the sensor detection range is, the higher the probability
of missing some landmark becomes, thus potentially degrading
localization accuracy. This issue paves the way to further
research activities on placement optimization, which should
take into account not only the geometry of the environment,
but also the probabilities of moving from each landmark to its
neighbors. In order to address this problem, a lattice of land-
marks could be turned into a Markov chain model, in which
nodes and edges of the resulting graph represent, respectively,
the available landmarks and the transitions between pairs of
them (with a given probability). The main challenge of using
this model is that the transition probabilities depend on both
the real paths of possible agents and the constraints imposed
by the environment. So, this problem will be investigated in a
future work.

APPENDIX

DERIVATION OF SYSTEM OF INEQUALITIES (7)

Let pi,j = [xi,j , yi,j ]
T . Since the inverse of (5) is

Q−1
γ =

1

r sin(2β)

[

cos(β − γ) − sin(β − γ)
cos(β + γ) sin(β + γ)

]

,

the constraints on coefficients λ1 and λ2 can be expressed as

λ1 ≥ 0 ⇔ [1 0] Λ ≥ 0 ⇔ [1 0]Q−1
γ pi,j ≥ 0,

λ2 ≥ 0 ⇔ [0 1] Λ ≥ 0 ⇔ [0 1]Q−1
γ pi,j ≥ 0,

λ1 + λ2 ≤ 1 ⇔ [1 1] Λ ≤ 1 ⇔ [1 1]Q−1
γ pi,j ≤ 1,

which yields to














cos(β − γ)xi,j − sin(β − γ)yi,j ≥ 0,

cos(β + γ)xi,j + sin(β + γ)yi,j ≥ 0,

(cos(β − γ) + cos(β + γ))xi,j+

(sin(β + γ)− sin(β − γ))yi,j ≤ r sin(2β).

Hence, after some algebraic steps it follows that














cos(β − γ)xi,j − sin(β − γ)yi,j ≥ 0,

cos(β + γ)xi,j + sin(β + γ)yi,j ≥ 0,

cos(γ)xi,j + sin(γ)yi,j ≤
r

2

sin(2β)

cos(β)
.

(17)

Thus, by replacing the elements xi,j and yi,j of (4) as well

as r
2
sin(2β)
cos(β) = r sin(β) = h into (17), (7) finally results.
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