
Health, demographic change and wellbeing
Personalising health and care: Advancing active and healthy ageing

H2020-PHC-19-2014
Research and Innovation Action

CANTO
GA 643644

Deliverable D5.4
Activity Planning

Deliverable due date: 2017-05 Actual submission date: Thursday 1st June, 2017

Start date of project: February 1, 2015 Duration: 42 months

Lead beneficiary for this deliverable: UNITN Revision: 1.0

Authors: Paolo Bevilacqua, Luigi Palopoli, Marco Frego

Internal reviewer: Daniele Fontanelli

The research leading to these results has received funding from the European Union’s H2020 Research
and Innovation Programme - Societal Challenge 1 (DG CONNECT/H) under grant agreement n◦ 643644.

Dissemination Level

PU Public

CO Confidential, only for members of the consortium (including the Commission Services) X

The contents of this deliverable reflect only the authors’ views and the European Union is not liable for any use
that may be made of the information contained therein.

Ref. Ares(2017)2762370 - 01/06/2017

ACANTO

2

Contents

Executive Summary 3

1 Introduction 7

2 Framework 11
2.1 Example scenario . 12

3 Motion Planning 15
3.1 State of the Art . 15
3.2 Problem Description . 16
3.3 Geometric subproblem . 16

3.3.1 Clothoids . 16
3.3.2 Kinematic model . 17
3.3.3 Approach: Stochastic search . 17

3.4 Walking in the crowd . 18
3.5 Map representation . 24

4 High level planning and refinement 25
4.1 Formalization of Activities . 26
4.2 Temporal Uncertainty . 30
4.3 Automated Planning . 30
4.4 Plan Refinement . 33
4.5 Planning for groups . 33

5 Links to other work packages 37

6 Conclusions 39

A Example scenario 41

3

ACANTO

4

Executive Summary

This deliverable presents the technology developed by the ACANTO consortium to solve the problem of trans-
lating a recommended activity (produced through the technology produced in WP4) into an executable plan.
An executable plan is for us a sequence of curves that joins a set of desired locations and that can be actually
followed by a FriWalk using the guidance solutions developed in WP6.
The problem tackled here has two distinct facets. One is to plan a sequence of high level actions that achieves
the goals of the recommended activity and respects the preferences encoded in the user profile. On the same
level of importance is that the high level have a realistic match with a lower level sequence of actions (i.e.
following curves), which can be executed by the user with her FriWalk and with her physical limitations. As
discussed in the deliverable, our approach is based on an abstraction/refinement technique. Abstraction is used
to characterise high level actions with “physical parameters” considering a wide range of possible scenarios.
Refinement is used to produce a motion plan that refines the high level actions.
This final deliverable regarding the Activity Planner presents various improvements and updates from the pre-
liminary version (D5.3). From the perspective of the motion planning, we present a possible improvement based
on the deterministic search for a sub–optimal solution path, through the construction of a visibility graph. The
resulting path is used as an initial guess for the stochastic search algorithm. Regarding the high level reason-
ing, we illustrate how we intend to model the possible tasks, preferences and constraints, and the possibility to
adopt a different strategy to find a valid plan, based on the translation of the high level model to a Mixed Integer
Linear Program. Finally, we provide a detailed example on how the original model can be extended to support
the generation of a plan considering more users.

5

ACANTO

6

Chapter 1

Introduction

Activity Planning plays a very important role in ACANTO as it represents the trait-d’union between the concep-
tion of an Activity Recommendation and its execution. This is easy to see in the logical diagram in Figure 1.1.
Once an activity has been generated and the user (or a group of users) commit to its execution, it has to be
translated into an executable plan. This step entails:

1. Finding the best way to achieve the goals contained in an activity, given a description of the environment
(with its opportunities and constraints) and the preferences contained in the users profile,

2. Generating a motion plan that can be smoothly executed by the users using their robotic walkers (Fri-
Walks).

The former activity requires a good amount of high level reasoning. It uses a high level representation of
entities and actions and it takes decisions that can be executed in typical (or worst case) operating conditions.
The latter activity, on the contrary, takes into direct consideration dynamic equations and physical limitations
of the vehicle and it generates a plan that can be executed given the current estimated conditions. The plan
is amenable to changes and corrections as required by the situation encountered along the path, and this falls
under the responsibility of the Reactive Planner.
Just to make a quick example (others will follow in the next chapter), suppose the recommendation system
issues a recommendation such as “visit to the science museum”. Browsing the catalogue and considering a user
with a keen interest on “mammals”, the planner will select a sequence of targets that will likely maximise the
user’s satisfaction. The total duration of the visit will have to be within the boundaries dictated by the physical
conditions of the user. In the same way, other constraints (such as having a bathroom always in easy reach) will
have to be enforced. It could be that some of the constraints conflict. In this case the system will use priorities
to make a choice. Interestingly, all these choices will be taken using a high level of abstraction in order to
effectively reason about options and opportunities. However, all abstract choices will have to be representative
of feasible concrete actions. For instance suppose that moving from place A to B is an action associated with a
duration between Tmin and Tmax, then it means that many “low-level” scenarios have been considered and that
in all of them the system could plan a concrete motion from A to B with a duration in the interval [Tmin, Tmax].
The confidence of this interval can be hard, meaning that for all scenarios that can be fancied the property holds
true, or it can be soft, meaning that the property is satisfied with an acceptable probability (confidence). Once
a decision is taken on a sequence of high level actions, the plan will have to be refined into an actual motion
plan, i.e., a sequence of curves that the walker can follow and that are compatible with the current situation of
the environment. As long as this specific situation falls within the scenarios considered in the definition of the
high level actions, the planner will surely find a feasible solution.
In the next chapter we will offer a more complete description of the overall planning framework and of its
different components. The document is organised as follows. Chapter 2 describes the general framework

7

ACANTO

Profiler
Activity

Generator
HMI

Reactive
Planner

Activity
Planner

Profile Activity
Recommended

Activity
Plan Plan

Refined

Perceiving
the user

state

Execution
Monitor

Activity
Monitor

Activity
Evaluator

Conception of social
activities

Execution of social activities

USERS

ENVIRONMENT

CPSN
Perception of users and

environment

Real-time
perception of

environment
Long

Range
Short
Range

KNOWLEDGE
BASE

Profiles,
circles

ONBOARD SENSING

AAL sensing
DEVICES

AAL sens.
DEVICES

DOCTORSFAMILY

A priori
Information

Robot
Control

Interpreting
the social
context

Figure 1.1: Logical diagram representing ACANTO’s main components and their interconnections

8

ACANTO

composing the Activity Planner. Chapter 3 presents the motion planner, and describes the models and cost
functions adopted to synthesize comfortable trajectories from the perspective of the user. Chapter 4 illustrates
the high-level planning component, and how it is used in combination with the motion planner to produce
optimal plans that can be executed by the FriWalk. Finally, the conclusions summarize all the key points of the
Activity Planner framework, and present some open issues and possible future extensions.

9

ACANTO

10

Chapter 2

Framework

The objective of the Activity Planner is the synthesis of an executable plan, that can be carried out by the
FriWalk. The plan is generated based on the suggestions and recommendations coming from the Activity
Generator, and must take into account information and knowledge regarding the specific profile of the user.
The user profile defines preferences and constraints specific to each person. The plan should try to maximize
the satisfaction of the user by choosing activities and actions based on his preferences, but at the same time
must respect all the imposed hard constraints (for example specific medical indications).
The idea behind the framework composing the Activity Planner is to generate and use data obtained through
various simulations to dynamically produce a realistic model for the high-level instance of the planning problem
(expressed with a language of the PDDL family). A diagram illustrating the structure of the Activity Planner is
shown in figure 2.1.
A geometric representation of the environment defining the locations of the various points of interest and
including information about the layout of the building and of the static obstacles (like walls) is used as a base
model for all the simulations. This static map is randomly filled with dynamic elements like crowds, or zones
to avoid (repulsive regions) or to walk on (attractive regions), producing different scenarios. This dynamic
elements, different for each simulation, are generated according to some probability distribution based on
statistical observations on the real environment. During each simulation, the motion planner is run to find
optimal paths to move between each pair of connected points of interest. Each of the produced optimal paths
must avoid collisions with static obstacles, and should optimize a cost function based on the user comfort,
which depends both on the geometry of the followed trajectory, and on rewards and penalties accumulated
when traversing attractive or repulsive zones.
By analysing the data extracted from these simulations, our system computes statistics regarding the amount
of time and distance required to move from one point of interest to another. The parameters associated to the
elementary actions are stored for each scenario (e.g. level of crowdedness, environmental conditions, etc.) in
the KnowledgeBase. The frequency of each scenario is weighted when computing the aggregate value of the
parameters during the planning phase. This data is also integrated with the real time observations of the sensing
system, if available. This information is then injected into the model used to express the high-level instance of
the planning problem. The obtained instance can thus be solved by an automated planner, to produce a sequence
of high-level tasks and actions compatible with user needs and requirements. In this way, the produced plan
will be valid for most of the possible situations that are likely to occur, and only for a small amount of unlikely
scenarios could the plan become unfeasible. Should this happen, the reactive planner comes into the picture
producing the necessary changes.
When the high-level plan is finally transformed into an executable low-level plan, actions corresponding to a
motion between two different locations have to be refined by invoking the motion planner. The net result is
an optimal path based on the current status of the environment, according to the current attractiveness/repul-
siveness (crowdedness) of the different zones of the map. Due to the realistic simulations performed before

11

ACANTO

Figure 2.1: Diagram illustrating the structure of the Activity Planner

the synthesis of the high-level plan, for almost all the possible situations the produced trajectory will comply
with the corresponding high-level task. Thus, the components supporting execution and monitoring will be
able to deal with many different scenarios, without the need for an intervention of the automated planner. Only
in the case of some unlikely and exceptional situations, will the plan become unfeasible, and a new high-level
plan will be computed to address the contingencies encountered on the path. The percentage of uncovered
cases depends on the percentile of considered situations when the duration of a high level action is estimated
by simulation. Considering worst case scenarios (or conservative approximations) permits the production of
plans valid for all the possible conditions. The price to pay is that many actions will be ruled out, even if they
are very rewarding, because of unlikely catastrophic events. Worst case planning could therefore be extremely
conservative and, ultimately, inconvenient. On the other hand, if our choice of the percentile is too “liberal”,
we could have frequent cases in which a plan has to be radically modified during its execution, which diminish
the confidence of the user in the system. So a trade-off between the amount of contemplated scenarios and the
amount of different admissible plans must be sought.

2.1 Example scenario

The scenario adopted within this deliverable to show realistic examples for the different components of the Ac-
tivity Planner framework, is inspired from Michael’s use case, discussed in deliverable 2.5. This use case gives
us the possibility to define a simple but realistic scenario, and to show how different features like preferences
and hard constraints can be modelled.

Michael is a 72 year old man who lives alone in Felling, Gateshead. For the past few years, he
has found mobility very difficult and he is waiting for a hip operation. Consequently, he does not
get out much. He used to enjoy visiting museums and now fulfils his passion for natural history
by watching documentaries on TV. He would like to be able to get out to visit the museums in
Newcastle.

A researcher visits Michael one day and shows him the FriTab. Michael explains to the researcher
that he has mobility problems so would not be able to get out much. But the researcher explains

12

ACANTO

the FriWalk to him which is owned by several shops, galleries and museums in the area. He also
explains that people on the FriTab network may be able to help him get transported to locations and
events. So Michael enters his details into the system and tells it that he has mobility problems. The
information on Michael’s profile are also updated by his doctor, who also enters some constraints
concerning the activities Michael can safely carry out.

The next day, the FriTab shows Michael that a tour is being organised at the Hancock Museum. It
invites him to attend and tells him that another person attending would be willing to pick him up.
The system knows that Michael enjoys natural history and that he also has mobility problems. It
knows that the museum has several FriWalk devices that can help Michael. It also knows that one
other attendee has a car and is willing to transport friends. Michael is hesitant but agrees to give
it a try. So he tells the system that he will attend. The FriTab tells him that Jane will pick him up
before the event in her car. Michael tells her his address.

At the arranged time, Jane picks Michael up and they drive to the museum. When he arrives at the
museum, he is given a FriWalk which helps him to walk with the rest of the tour group. After the
tour is over, the FriWalk even suggests a guided tour of its own that Michael can do alone without
violating the medical prescriptions. However, Michael is tired but decides to come back and try the
guided tour another day. The FriTab forwards the activity log file to the network for user profile
updates.

Inspired from this use case, we define three different scenarios, based on a map representing portions of the
museum with an increasing number of points of interest, and on some realistic preferences and constraints
fitting Michael’s profile. The map used for our experiments, depicted in figure 2.2 (needs to be updated),
represents the complete museum, and contains various points of interest, regarding different topics. The solid
black lines visible on the map correspond to static obstacles (walls). In figure 2.3 is shown an example of the
same map, with some dynamically generated attractive (green) and repulsive (red) zones which could be used
to perform some simulations. For the modelling of this example scenarios, we assume some hard constraints
and some preferences for Michael, reported in table 2.1.

Table 2.1: Michael’s constraints and preferences

Hard Constraints Preferences
• Avoid activities requiring too much walk (< 500 m) • Level of interest for plants: 30
• Avoid stairs/lift • Level of interest for animals: 60

• Level of interest for fungi: 15

For the sake of brevity ,for the different examples we assume to have already computed the aggregated param-
eters of each elementary action according to the current information of the environment yield from the sensing
system.

13

ACANTO

p1
p2

p3

p4 p5

p6p7

p8

p9 p10 p11 p12

p13

p14

p15p16

p17

p18

p19

p20

p21

p22 p23 p24 p25

p26p27

p28

p29

p30

Figure 2.2: Map of the museum used for all the examples of this deliverable. The yellow zone is the section
about fungi. The green zone is the section about plants. The blue zone is the section about animals.

p1
p2

p3

p4 p5

p6p7

p8

p9 p10 p11 p12

p13

p14

p15p16

p17

p18

p19

p20

p21

p22 p23 p24 p25

p26p27

p28

p29

p30

Figure 2.3: Map of the museum with an attractive (green) and a repulsive (red) zone. The attractiveness
of a zone may be used to model dynamic information about the environment like for example the level of
crowdedness.

14

Chapter 3

Motion Planning

The Motion Planner is responsible for the generation of an actual path that can be followed by the walker.
Given the starting and the goal location, it produces a path connecting them, trying to minimize a certain cost
function, and at the same time avoiding all the obstacles on the map.
As depicted in figure 2.1, the motion planner has two different applications within our framework. Firstly, it
is used during the simulation stage to determine realistic physical parameters regarding the environment (e.g.
lower and upper bounds on the time required to walk between two different locations) that are associated to the
various high-level actions during the synthesis of the planning model. This preliminary step allows us to define
realistic high-level actions, taking into account information about the environment and the user comfort, and to
synthesize plans which are feasible in most of the possible situations.
Secondly, the motion planner is used to refine the sequence of high-level actions composing the plan into a
sequence of motion primitives (paths) that can be travelled by the FriWalk. These are synthesized when the
plan must be actually executed, taking into account the situation detected on the field and choosing the “best”
solution in terms of user comfort.

3.1 State of the Art

Different approaches exist to solve the problem of motion planning [21]. Among them, sampling based ap-
proaches are very popular, since they provide a viable solution even for really large and high-dimensional
search spaces, where deterministic techniques are too expensive in terms of computational requirements. Sam-
pling based motion planners randomly sample points within the configuration space, searching for optimal
paths connecting the given starting and goal configurations. One widespread and successful sampling based
motion planning algorithm is RRT* [20]. It is an anytime algorithm, meaning that, if it is left running for more
and more time, it keeps improving the produced solution. Moreover, RRT* has been shown to find an optimal
solution (if one exists) with probability 1 in the limit when the running time tends to infinity.
Particularly relevant in our context is planning motion in crowded areas, which requires the availability of a
good model for the interaction between agent and crowd. Agent-based crowd modelling has been studied ex-
tensively for the last two decades, mainly with attention to emergency situations such as the evacuation of a
certain area, e.g. a theatre or a building [26]. Many models have been proposed, among them we recall: path
planning, navigation systems, combinations of precomputed manoeuvres [2], multi-agent planning [23], crowd
synthesis [18], force and potential fields, social force models, continuum fluid dynamic models.

15

ACANTO

3.2 Problem Description

Motion planning solution for a robot assisting a user requires a proper consideration of the following three
points:

1. the length of the path;

2. the time required to walk to destination;

3. the comfort along the path.

The length of the path is a purely geometric fact, whereas the time required to travel on the path depends on
dynamic considerations about the pedestrian; finally, the comfort index can be defined with various character-
istics and can be dependent on the dynamic model or on the geometric shape of the path. Using a “global”
approach, these aspects are considered together. Hence the minimisation problem J is defined, for weights w1,
w2 and w3, as:

min J = w1

∫
γ

ds+ w2

∫
γ

dt+ w3

∫
γ
c(s) ds,

where γ is the path, the first integral minimises the length, the second the time and the third the comfort func-
tion c(s). If v is the speed profile along the path γ, the integral with respect to time dt and space ds are related
with the formula ds = v dt, thus it is possible to reformulate the previous target functional completely in space
or time.

Thus, as our motion planner should synthesize effective paths, particular care and attention must be put not
only to geometric constraints, but also to external and environmental factors like for example the presence of
crowds, affecting the user comfort. Indeed, depending on the density of the crowd, on the peculiar requirements
of the user, and on the cost of an alternative path, the system must choose the most appropriate path, trying to
avoid or minimize the crossing of penalizing zones.
In order to tackle the complexity of the resulting problem, we address two subproblems separately: a geometric
subproblem that takes into account the shape of the path, length and comfort index (given by the minimum
jerk) and another, different, subproblem dealing with the dynamic constraint of holding a certain speed profile
v along the path (and thus considering the total time required to travel along γ).

3.3 Geometric subproblem

The geometric component of the cost function adopted to optimize the comfort of the user should minimize
the total amount of jerk (corresponding to variations of the curvature) and the length of the path. Within our
system, the generated paths are thus composed by splines of clothoid curves minimizing the jerk while keeping
the total length as short as possible [5, 10].

3.3.1 Clothoids

This subsection contains some brief remarks about clothoids and the adopted notation.

Definition 3.3.1 (Clothoid). A clothoid is a parametric plane curve (x(s), y(s)), where s is the arclength, with
the property that the curvature κ(s) is a linear function of s, i.e κ(s) = κ′s+ κ0.

16

ACANTO

It has been proved since Euler that a clothoid arc is represented via the Fresnel Integrals, and is characterised
by six real parameters: (x0, y0), the initial point, θ0, the initial angle, κ0, κ′0 the curvatures and the length L.
The space coordinates, angle and curvature at arclength s on a clothoid are given by:

x(s) = x0 +

∫ s

0
cos

(
1

2
κ′0t

2 + κ0t+ θ0

)
dt, θ(s) =

1

2
κ′0s

2 + κ0s+ θ0,

y(s) = y0 +

∫ s

0
sin

(
1

2
κ′0t

2 + κ0t+ θ0

)
dt, κ(s) = κ′s+ κ0.

3.3.2 Kinematic model

Clothoids have been chosen as motion primitives because, as shown in [9], they represent time-optimal trajec-
tories for the kinematic model: 

ẋ
ẏ

θ̇
˙̄δ

 =


cos(θ)
sin(θ)
δ̄
0

 v +


0
0
0
1

 ω̄ (3.1)

where θ is the orientation of the vehicle, v is the forward velocity, δ̄ the steering angle and ω̄ its velocity. In [1]
is shown as the optimal solution of model 3.1 provides a good approximation for human trajectories, based on
an high number of observations of human motions in real environments. In addition, the generated trajectories
must be feasible for our FriWalk, that can be represented by the nonholonomic model 3.1.
Indeed, our FriWalk platform can be represented using the kinematic model of an unicycle-like vehicle, asẋẏ

θ̇

 =

v cos(θ)
v sin(θ)
ω

 (3.2)

where v and ω are respectively the forward and the angular velocities. However, the trajectory followed by the
FriWalk should have a continuous curvature and minimize the jerk to maximize the user comfort [15, 7]. Thus,
the model described by the equations 3.2 is not adequate, and needs to be extended to the model described by
the equations 3.1 to comply with these constraints.
Therefore, the adoption of clothoids as motion primitives allows our system to produce feasible, comfortable
paths with continuous curvature. Moreover, with the adoption of semi-analytic solutions like the ones proposed
in [5], the required computations are extremely fast. The use of motion primitives having analytical or semi-
analytical solutions, which are extremely fast and efficient to compute, is of fundamental importance for the
motion planner, that may need to generate an high number of trial trajectories to find an optimal path.

3.3.3 Approach: Stochastic search

The motion planning algorithm adopted within our framework is a variation of the traditional RRT*, called
Informed-RRT* (I-RRT*) [12]. Algorithm 1 displays the pseudocode showing the main steps of this algorithm.
During the initial phase, while a solution has not been found, it works identically to RRT*, by sampling new
points within the free configuration space, and connecting them to the closest nodes within the search tree (if
the subpath connecting them is collision free). When a node is added to the tree, the cost to reach neighbour
nodes already in the tree passing through this new node is computed. For all the neighbours for which the cost
of the new path is lower than the current cost, a ‘rewiring’ operation is performed, and the new node is set as
their parent. Differently from traditional RRT*, when a solution has been found I-RRT* does not sample all the
possible regions of the free space anymore, but it samples possible candidates only within an elliptical region of

17

ACANTO

the configuration space for which an heuristically calculated total-cost is lower than the current optimal cost. In
figure 3.1 is shown an example of a search tree produced by the I-RRT* algorithm. After a sequence of points
connecting the start and the goal locations has been found, a collision-free spline of clothoids passing through
these points and minimizing the jerk and length is returned as the final trajectory [6]. The detection of collisions
between a clothoid and generic static obstacles is performed by first decomposing each clothoid into a sequence
of enclosing triangles. At the beginning of the execution, also the boundaries of the obstacles are decomposed
into a sequence of enclosing triangles, which are organized into an efficient, hierarchical axis-aligned bounding
boxes tree data-structure. Thus, to check whether a clothoid is in collision with some of the obstacles, it is
sufficient to check whether any of the triangles composing the clothoid is in collision with any of the triangles
describing the boundaries of the obstacles. More details on the implementation of the motion planner can be
found in [7].
An example of an optimal clothoid spline interpolating the points produced by the I-RRT* algorithm, avoiding
all the static obstacles and minimizing the total jerk and length is shown in figure 3.2.

Visibility Graph

To improve the performance of the motion planner, an initial sub–optimal solution is provided to the RRT*
algorithm. This solution is found deterministically by constructing a visibility graph, where the nodes represent
points of the Euclidean plane corresponding to all the vertices of the polygons representing the obstacles,
together with the initial and the final goal positions of the robot. The visibility graph considering only the
obstacles can be constructed once from the map of the environment, and dynamically updated with the new
start and goal location for each invocation of the motion planner. Moreover, since the locations of the points
of interest on the map are in general static or changing with a low frequency, also these nodes can be inserted
in the visibility graph associated to the current map. For each pair of nodes, the segment connecting them
represents an edge of the graph if it does not pass through any obstacle.
The visibility graph can be constructed and updated efficiently, using the algorithm proposed by Lee [22, 4].
Since the shortest path from the start to the goal node on the visibility graph is optimal when the adopted
cost metric is the total length, the waypoints composing this path can be inserted as an initial solution when
running the randomized algorithm. This approach allows us to overcome some limitations occurring when
adopting a solution based only on RRT* (mainly the bug trap, i.e. the difficulty and slowness to find solutions
passing through small openings, like doorways). The stochastic search, then, is used to update the initial path,
adopting more complex cost functions, accounting also for the user comfort and for the different attractiveness
of different areas of the map. An example of visibility graph is shown in figure 3.3.

3.4 Walking in the crowd

To obtain sensible physical parameters regarding the cost/duration of high-level actions from the simulations, it
is of fundamental importance to estimate sensible values for the time required to walk a given path, accounting
also for the crowdedness of the different zones. Indeed, an user should take more time to traverse unfavourable
and packed zones, depending on the specific density of crowdedness. In addition, the walking time can be used
as a cost function to evaluate the “goodness” of a specific solution. In this way, the optimal solution in terms of
user comfort will be sought as a trade-off between the length of the path and the avoidance of unpleasant areas.
Within our solution, the user is assumed to walk at an almost constant speed for each time interval, which will
have higher values when the path is obstacle-free, and lower values for example when crossing unfavourable
areas. We consider herein only fixed attractive and repulsive regions, that are modelled with radial symmetry
like a central force (e.g. gravitational field). As an example, we can model the effect of an obstacle (or of a

18

ACANTO

Algorithm 1: Generation of a spline of clothoids from a given starting position to a given goal
Data: mapName, start, goal
Result: Smooth path from start to goal
function GeneratePath

map← processMap(mapName)
tree← initTree(start, goal)
ellipse← initEllipse(start, goal)
while (not termConditions) do

samplePos← sampleNextPosEllipse(map, ellipse)
parentFound← findParent(samplePos,map, tree, parent,minCost)
if parentFound then

newNode← insertNewNode(samplePos, tree, parent,minCost)
rewireNeighbours(newNode,map, tree)
if goalInRange(samplePos, goal,map) then

connectGoal(node, goalNode, tree)
end
updateEllipse(ellipse)

end
updateTermConditions(termConditions)

end
path← interpolateClothoidPath(tree)
return path

end

Figure 3.1: Example of a possible search tree produced by the I-RRT* algorithm

19

ACANTO

Figure 3.2: Example of an optimized clothoid spline interpolating the path produced by the I-RRT* algorithm

Figure 3.3: Example of visibility graph

20

ACANTO

Figure 3.4: Example of the adopted force function: in green level sets for an attractive zone, in red for a
repulsive zone.

desired point) by a field

F = (Fx, Fy) =
σα

r2 + β
r̂,(3.3)

where α, β > 0 are the parameters of the field, r is the distance of the particle that moves in the field from the
center of attraction/repulsion A = (Ax, Ay)

T , r̂ is the corresponding versor (unit vector), and of course we
have r2 = (x−Ax)2 + (y−Ay)2, σ = ±1 is the sign that specifies whether the effect is attractive or repulsive.
This function should not be thought of as a proper “force”. Rather, it can be used to specify the “viscosity”
(or the stimulus) experienced by the user. For instance if we encounter a crowd, this function expresses the
“friction” experienced by the user, which is related to the density of people.
An important feature of our approach (as described in the previous section) is that once we determine the ter-
minal and the intermediate points (e.g., by using RRT*) the solution of the optimal path is extremely quick,
being based on semianalytical or closed form solutions of the optimal control problem. If we want to retain
the same advantage also when planning the motion across crowded areas, it is key to set up the problem as the
solution of a simple linear ODE (as shown in a previous work of Frego et al. in the context of motion planning
for cars [10]). For simplicity we will modify only the coefficient of the drag (Reynolds constant) according to a
density field f(x, y) = ||F || of the area in which we are travelling similar to the one shown in Equation (3.3).
We suppose the effect of the density function to be active inside a circle of radius r around the point A, and
f = 0 outside. The instantaneous coefficient c will be then equal to c = f(x(s), y(s)) at each abscissa s,
where (x(s), y(s)) is a point on the clothoid. It is not possible to find a closed form of the ODE for the velocity
over a general function f , hence we have to sample it in opportune areas and consider a piecewise constant
approximation of f for c. If the density function f is constant inside the circle, then the computation becomes
easy to handle. We assume that f has the property of being constant for points at the same distance from the
center of the circle, see for example, figure 3.4. It is convenient to sample f choosing a suitable partition of the
interval of the possible coefficients c in [fmin, fmax]. In this way, the intervals of the original clothoid arc are
found by intersecting the clothoid with the concentric circles around A.

21

ACANTO

1

2

3

4

5

v

0 1 2 3 4 5

t

1

2

3

4

5

v

0 1 2 3 4 5

t

Figure 3.5: Example of the adopted velocity function: left, the case of increasing velocity (v0 < v∞), right the
case of decreasing speed (v0 > v∞). v∞ is the asymptotically constant velocity.

1

2

3

4

5

v

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

t

Figure 3.6: Example of a possible speed profile when walking in different conditions, the transitions connecting
two different zones of constant velocities have a steep coefficient that can be modelled with the parameter a of
(3.4). The higher a the steeper the transition.

The speed profile we adopt for the user motion simulates a piecewise constant function but with continuous
transitions between different velocities. To model this behaviour we use a classic linear ODE with the charac-
teristic of being monotone with a horizontal asymptote. The ODE for this is

v̇(t) = −av(t) + b, a, b ∈ R, a ≥ 1, b > 0,

the initial condition to solve the associated Cauchy Problem is v(t0) = v0, then the closed form solution is

v(t) =
b

a
+ (v0 − b/a)e−a(t−t0) = v∞ + (v0 − v∞)e−a(t−t0),(3.4)

where v∞ = b/a is the asymptotic velocity. The behaviour of the function is plotted in Figure 3.5 for the two
cases v0 < v∞ (v is monotone increasing) and v0 > v∞ (v is monotone decreasing), the case v0 = v∞ is the
case of v constant. The composition of a path with different velocities because of different scenarios produces
a speed profile like the one in Figure 3.6. To use it successfully, we can find parameters a and b such that the
transition is steep enough and the asymptotic velocity v∞ is the desired velocity. This can be obtained easily
by choosing a suitable a and then set b = av∞. Therefore it is convenient to directly consider a sampling of
constant velocities in concentric circles around the centres of attraction/repulsion of the force field, see figure

22

ACANTO

P1

P2P3

1

2

3

4

5

v

tP1 P2 P3

Figure 3.7: Intersection of a clothoid with a (repulsive) force, on the right the corresponding decreasing speed
profile when the path approaches the center of repulsion.

3.7. Once the velocities are assigned on each clothoid subarc, we need to compute the time required to travel
that piece of curve. This can be obtained integrating the equation of the speed profile (3.4) to retrieve the space
travelled and then invert the relation for the total time. The computation can be done analytically, which is very
important in order to use (many times) this procedure as a submodule of a master algorithm that considers a
family of possible trajectories. The first step is to integrate (3.4) which gives an expression for the space:

s(t) =
b

a
t+

b/a− v0
a

e−a(t−t0) = v∞t+
v∞ − v0

a
e−a(t−t0).

The inverse of the function s(T) = L with respect to T , i.e. the total time T required to travel a distance L on
the clothoid subarc, is given in terms of the special function LambertW. The expression for T is:

T (L) =
aL

b
+

1

a
LambertW

(
(av0 − b)e−(a

2L)/b+at0

b

)

=
L

v∞
+
v∞
b

LambertW
(

(v0/v∞ − 1)e−(aL)/v∞+at0
)
.

The LambertW function is defined as the inverse function of the problem z = W (zez) and in general is defined
over the complex numbers and is real if the argument is greater than −e−1. The next theorem shows that the
above expression for T yields always a real value for any admissible value of L.

Theorem 1. The expression for T (L)

T (L) =
L

v∞
+
v∞
b

LambertW
(

(v0/v∞ − 1)e−(aL)/v∞+at0
)

is well defined for feasible lengths L ≥ t0v∞.

Proof. The space is a monotone increasing function for positive velocities, thus the minimum value that L can
assume is given by the value of s(t0) which is equal to

L ≥ Lmin := s(t0) = t0v∞ +
v∞ − v0

a
.

The argument of the LambertW is (v0/v∞−1)e−(aL)/v∞+at0 and the sign of the (positive) exponential function
is given by the sign of (v0/v∞ − 1). On an arc of decreasing speed, v0 ≥ v∞ and hence the argument of the

23

ACANTO

LambertW function is positive. On the other hand, if the speed is increasing, v0 < v∞ and we can bound
the corresponding factor in the argument of LambertW with -1. We have then to check if the exponential
e−(aL)/v∞+at0 ≤ e−1, or taking the logarithm and simplifying, if

a

(
L

v∞
− t0

)
≥ 1.

Using a ≥ 1 we simplify the condition to
L

v∞
− t0 ≥ 1 which gives

t0v∞ ≤ L ≤ Lmin = t0v∞ +
v∞ − v0

a
.

Thus the function T (L) is always well defined for admissible values of L and never takes complex values.

Taking advantage of the result just shown, we can execute Algorithm 1, where the cost is no longer a combi-
nation of jerk and path, but of jerk and time to travel. The latter is found using the function T (L) discussed
above.

3.5 Map representation

Maps for the different activities of interest for ACANTO (e.g. museums, shopping malls, ...) are stored and
internally represented using SpatialLite [11]. SpatialLite is an open source library supporting the modelling
of physical and geometrical data, and allowing the users to perform queries involving space and geometry
extremely efficiently. For example, it is possible to find all the geometric shapes belonging to a certain region,
or all the points of interest within a certain radius from a given point. In our case, for each floor of a building,
we store all the polygons representing the static obstacles (e.g. walls), and, in a different table, all the points
of interest. For each PoI, we keep track of its type, associated tags (e.g. mobility constraints) and additional
properties (e.g. time required to perform the associated action, cost, ...).
Moreover, special points of interest are stored to model the indoor connections, i.e. the connections between
the different floors (e.g. lifts). During the formalization of the high-level activity, only the set of PoIs reachable
according to the mobility constraints of the users (e.g. the possibility to use the stairs, lifts, ...) is considered.

24

Chapter 4

High level planning and refinement

Action planning based on PDDL allows us to model the high-level actions representing different tasks and
activities that the agent (in our context the ensemble user + FriWalk) can perform. An high-level representation
of this kind gives us the possibility to express in a simple and effective way user needs and preferences, and
therefore to produce plans tailored on the specific profile of each user. The automated planner does not need
to consider low-level details on how each action is actually implemented and carried out. For example, if the
domain we are describing is about a visit to a museum, a single action could be for example <move PoI1
PoI2> representing the task of transferring the user from point of interest 1 to point of interest 2, or <visit
PoI1> representing the task of seeing and visiting PoI1. Preferences may be used to express and model
interests and hobbies of the current user, and thus to generate tasks and activities involving topics and subjects
which are really compelling and suited for the user. Hard constraints may be used to model medical indications.
For example they may model the need to avoid plans longer than a certain overall length, or to avoid regions
which are too far away from a bathroom.
The planning problem in PDDL is described by defining a domain for the model, declaring predicates and
function symbols used to represent the problem, as well as the possible actions which can be applied to evolve
from the current state to possible subsequent states. The planning domain describes general operators and
symbols, which are constant and shared by all instances of that particular problem. Then, for each instance of
the planning problem that we want to solve, a file defining the specific instance must be generated. This file
defines the “concrete” objects for the current instance of the problem (and also their type). The same file defines
the initial state (in terms of the initial truth assignment of the predicates and of the numeric values taken by the
functions) and all the accepted goal states (in terms of predicates that must hold true and constraints that must
be respected). In addition, starting from PDDL2.1, we can define the problem as an optimization (minimization
or maximization) over the values of some numerical functions [8]. Moreover, from PDDL3, also hard and soft
constraints can be expressed [14]. Soft constraints represent preferences, i.e., conditions that the generated plan
should respect, but which could be violated by paying some penalisation cost. On the contrary, hard constraints
represent conditions which must always hold true in order for the generated plan to be accepted as a valid
solution. Within our framework, specific planning instances are generated and populated by combining static
information with data on the expected duration of a transition between different locations. As explained in
the previous chapter, such numbers are derived solving the motion planning problem under different realistic
scenarios. Each simulation considers a different realistic scenario in terms of crowdedness and other dynamic
phenomena of interest affecting the specific environment. Once the problem instance has been defined and
filled with all the required data, the high–level planning can be performed to find a valid solution, optimizing
the given metric function.

25

ACANTO

4.1 Formalization of Activities

All the recommended social activities share the same kind of actions (at least from the perspective of the
FriWalk and Activity Planner). Also the set of possible constraints and user preferences is similar for all the
planned social activities. Thus, the planning domain should be the same for all the planned activities, and define
the family of activities supported by our system. In particular, each planned task corresponds to a set of actions
that the Activity Execution Engine must be able to perform during the execution of the activity. The different
kinds of points of interest, constraints and parameters of the user and the environment are used to generate the
planning instance, based on the predicates, functions and types defined in the PDDL domain.
The generated plan is composed by a sequence of points of interest to visit. During the execution of the plan,
the Execution Engine should be provided with a list of tasks representing the transfers among the various PoIs,
and the actions that the Walker should perform during the visit to a particular point of interest (e.g. display
some information, wait for the user to enjoy a painting, ...). For each action composing a task, the relevant
parameters (e.g. duration, cost, ...) should be stored.
The domain for our example scenario defines the following types, predicates and functions:

(: t y p e s
; ; a P o i n t o f I n t e r e s t
Po i − o b j e c t

)

(: p r e d i c a t e s
; ; t r u e i f f . t h e u s e r i s c u r r e n t l y a t PoI ? p
(a t ? p − Poi)

; ; t r u e i f f . t h e PoI ? p has n o t been v i s i t e d y e t
(t o− v i s i t ? p − Poi)

; ; t r u e i f f . PoI ? p can be v i s i t e d
(v i s i t a b l e ? p − Poi)

; ; t r u e i f f . PoI ? p2 i s d i r e c t l y c o n n e c t e d t o PoI ? p1
(l i n k ? p1 ? p2 − Poi)

; ; t r u e i f f . t h e u s e r i s c u r r e n t l y n o t busy
(i d l e)

)

(: f u n c t i o n s
; ; t h e minimum amount o f d i s t a n c e walked so f a r
(m i n− t o t a l−d i s t a n c e)

; ; t h e maximum amount o f d i s t a n c e walked so f a r
(m a x− t o t a l−d i s t a n c e)

; ; t h e amount o f u s e r s a t i s f a c t i o n f o r t h e c u r r e n t p l a n
(s a t i s f a c t i o n)

; ; t h e minimum d i s t a n c e between two PoI s (d e t e r m i n e d by r u n n i n g
; ; many r e a l i s t i c s i m u l a t i o n s)

26

ACANTO

(min−d i s t ance ? p1 ? p2 − Poi)

; ; t h e maximum d i s t a n c e between two PoI s (d e t e r m i n e d by r u n n i n g
; ; many r e a l i s t i c s i m u l a t i o n s)
(max−dis tance ? p1 ? p2 − Poi)

; ; t h e speed a t which t h e u s e r moves
(speed)

; ; t h e amount o f t ime r e q u i r e d t o v i s i t PoI ? p
(v i s i t− t i m e ? p − Poi)

; ; t h e l e v e l o f i n t e r e s t o f t h e u s e r t o a s p e c i f i c PoI ? p
; ; (i n f e r r e d from t h e u s e r p r o f i l e)
(i n t e r e s t ? p − Poi)

; ; t h e maximum amount o f t ime e l a p s e d so f a r
(max− t ime−elapsed)

)

In addition, the actions to move the user to the next PoI and visit it are defined as:

; ; an a c t i o n r e p r e s e n t i n g t h e t r a n s f e r o f t h e u s e r from t h e c u r r e n t PoI
; ; ? from t o a n o t h e r d e s t i n a t i o n PoI ? t o
(: d u r a t i v e− a c t i o n move

: p a r a m e t e r s (? from − Poi ? t o − Poi)
: d u r a t i o n (and (>= ? d u r a t i o n (/ (min−d i s t ance ? from ? t o) (speed)))

(<= ? d u r a t i o n (/ (max−dis tance ? from ? t o) (speed))))
: c o n d i t i o n
(and

; ; t h e a c t i o n can be e x e c u t e d i f t h e u s e r i s a c t u a l l y a t
; ; PoI ? from , and t h e two PoI a r e d i r e c t l y c o n n e c t e d
(a t s t a r t (i n ? from))
(a t s t a r t (l i n k ? from ? t o))
(ove r a l l (l i n k ? from ? t o))
(a t s t a r t (i d l e))

)
: e f f e c t
(and

; ; a t t h e end of t h e e x e c u t i o n , t h e u s e r w i l l be l o c a t e d a t
; ; PoI ? to , and t h e uppe r and lower bounds on t h e t o t a l and
; ; p a r t i a l walked d i s t a n c e s w i l l i n c r e a s e a c c o r d i n g t o t h e
; ; s t a t i s t i c a l v a l u e s o b t a i n e d from t h e s i m u l a t i o n s and
; ; s u i t a b l y d e f i n e d f o r each p l a n n i n g i n s t a n c e
(a t s t a r t (n o t (i d l e)))
(a t s t a r t (n o t (i n ? from)))
(a t end (i n ? t o))
(a t end (i n c r e a s e (m a x− t o t a l−d i s t a n c e) (max−dis tance ? from ? t o)))
(a t end (i n c r e a s e (m i n− t o t a l−d i s t a n c e) (min−d i s t ance ? from ? t o)))
(a t end (i n c r e a s e (m a x−p a r t i a l−d i s t a n c e) (max−dis tance ? from ? t o)))
(a t end (i n c r e a s e (m i n−p a r t i a l−d i s t a n c e) (min−d i s t ance ? from ? t o)))
(a t end (i d l e))
(a t end (i n c r e a s e (max− t ime−elapsed)

27

ACANTO

(/ (max−dis tance ? from ? t o) (speed))))
)

)

; ; t h e a c t u a l a c t i o n o f v i s i t i n g a s p e c i f i c PoI
(: d u r a t i v e− a c t i o n v i s i t

: p a r a m e t e r s (? p − Poi ? t − Topic)
: d u r a t i o n (= ? d u r a t i o n (v i s i t− t i m e ? p))
: c o n d i t i o n
(and

; ; t h e u s e r must be a t l o c a t i o n ?p , must be i d l e and
; ; o b v i o u s l y he s h o u l d n o t v i s i t an a l r e a d y v i s i t e d PoI
(a t s t a r t (t o− v i s i t ? p))
(a t s t a r t (i d l e))
(a t s t a r t (v i s i t a b l e ? p))
(a t s t a r t (s u b j e c t ? p ? t))
(ove r a l l (v i s i t a b l e ? p))
(a t s t a r t (i n ? p))
(ove r a l l (i n ? p))

)
: e f f e c t
(and

; ; a t t h e end of t h e a c t i o n , PoI ? p i s s e t a s v i s i t e d
; ; t h e s a t i s f a c t i o n o f t h e u s e r i s i n c r e a s e d based on
; ; h i s i n t e r e s t on t h e s p e c i f i c t o p i c ? t , and t h e
; ; e l a p s e d t ime i s i n c r e a s e d based on t h e t ime r e q u i r e d
; ; t o v i s i t t h a t s p e c i f i c PoI
(a t s t a r t (n o t (i d l e)))
(a t end (i d l e))
(a t end (n o t (t o− v i s i t ? p)))
(a t end (i n c r e a s e (s a t i s f a c t i o n) (i n t e r e s t ? p)))
(a t end (i n c r e a s e (max− t ime−elapsed) ? d u r a t i o n))

)
)

The planning instance modelling our example scenario defines different objects representing the various points
of interest:

(: o b j e c t s
p S t a r t − Poi
p1 − Poi
p2 − Poi
p3 − Poi
. . .
pGoal − Poi

)

In the initialization section, the initial values of the numerical functions are set, together with all the predicates
holding in the initial state. Geometric information like the topology of the map in terms of interconnections
between the various points of interest, and the upper and lower bounds on the lengths of these links, are deter-
mined based on the results of the realistic simulations performed using the map of the environment (randomly
populated with sensible attractive/repulsive zones, as described in chapter 2).

28

ACANTO

(: i n i t
; ; i n i t i a l l y t h e u s e r i s l o c a t e d i n p S t a r t and i d l e
(i n p S t a r t)
(i d l e)

; ; t h e g e o m e t r i c d e s c r i p t i o n o f t h e e n v i r o n m e n t i s s y n t h e s i z e d
; ; a c c o r d i n g t o t h e r e s u l t s o f t h e s i m u l a t i o n s
(l i n k p1 p2)
(= (min−d i s t ance p1 p2) 2 1 . 5 0 5 8 0 0)
(= (max−dis tance p1 p2) 2 5 . 0 6 7 7 0 0)

(l i n k p1 p3)
(= (min−d i s t ance p1 p3) 3 5 . 0 0 0 0 0 0)
(= (max−dis tance p1 p3) 4 6 . 6 4 0 4 0 0)

. . .

; ; a l l t h e PoI s a r e s e t a s v i s i t a b l e l o c a t i o n s
(v i s i t a b l e p1)
(v i s i t a b l e p2)
(v i s i t a b l e p3)
. . .

; ; a l l t h e PoI s a r e i n i t i a l l y n o t v i s i t e d
(t o− v i s i t p1)
(t o− v i s i t p2)
(t o− v i s i t p3)
. . .

; ; t h e t o t a l walked d i s t a n c e and t h e maximum
; ; e l a p s e d t ime a r e i n i t i a l l y 0
(= (m i n− t o t a l−d i s t a n c e) 0)
(= (m a x− t o t a l−d i s t a n c e) 0)
(= (max− t ime−elapsed) 0)

; ; i n i t i a l l y t h e s a t i s f a c t i o n o f t h e u s e r i s 0
(= (s a t i s f a c t i o n) 0)

; ; t h e l e v e l o f i n t e r e s t o f t h e u s e r f o r t h e d i f f e r e n t Po I s
; ; must be d e f i n e d , based on h i s p r o f i l e
(= (i n t e r e s t p1) 30)
(= (i n t e r e s t p2) 60)
(= (i n t e r e s t p3) 15)
. . .

; ; t h e t ime r e q u i r e d t o v i s i t each PoI
; ; and t h e u s e r speed a r e s u i t a b l y s e t
(= (v i s i t− t i m e p1) 60)
(= (v i s i t− t i m e p2) 90)
(= (v i s i t− t i m e p3) 60)
. . .
(= (speed) 1)

)

29

ACANTO

The last part of the PDDL planning problem defines the goal conditions, the constraints on the final plan, and a
possible metric that should be optimized during the synthesis of the plan.

; ; t h e g o a l f o r t h i s p l a n n i n g problem i s t o be i n l o c a t i o n pGoal ,
; ; t o walk a d i s t a n c e o f a t l e a s t 30m and a t most 150m, and t o
; ; l a s t a t most 500 s
(: g o a l

(and
(i n pGoal)
(>= (m i n− t o t a l−d i s t a n c e) 30)
(<= (m a x− t o t a l−d i s t a n c e) 150)
(<= (max− t ime−elapsed) 500)

)
)

; ; t h e o p t i m i z a t i o n c r i t e r i o n a d o p t e d f o r t h i s problem
; ; i s t o maximize t h e s a t i s f a c t i o n o f t h e u s e r
(: m e t r i c maximize

(s a t i s f a c t i o n)
)

)

4.2 Temporal Uncertainty

The uncertainty in the duration of actions cannot be handled trivially by considering worst case scenarios in
the general case. For example, when the problem involves timed initial literals, representing exogenous events
changing the boolean value of some predicate at specific moments of time, or concurrent interfering actions, a
simple reduction of the problem by considering only worst-case durations can produce infeasible and invalid
plans. In [24], a sound and complete technique to transform PDDL planning problems with uncertain durative
actions to plain temporal planning problems without uncertainty is shown. The transformed problem can thus
be handled by one of the existing planners supporting temporal problems.
In the presence of exogenous and interfering events, our framework can adopt a similar technique to transform
the planning problem and remove uncertainties. Additional constraints on the minimum and maximum length-
/duration of a plan can then be defined by considering lower and upper bounds on the walked lengths/elapsed
times, as shown in the previous listing. Upper and lower bounds on the length/duration of each <move ?from
to> action are determined by running many realistic simulations, as described in the previous sections, and
storing the length and duration of each path connecting PoI ?from with PoI ?to. The generated data can then
be processed, to compute for each pair of connected points of interest an upper and a lower bound on their
distance. The values for the upper and lower bounds are chosen by keeping a certain percentile of covered
situations, and leaving out only a few unlikely situations.

4.3 Automated Planning

Once the PDDL planning domain and problem have been generated, the search for the most appropriate so-
lution implementing the activity can be performed using different strategies. Different state-of-the-art open
source tools are capable of solving automated planning problems (e.g. OPTIC [3], Fast Downward [16], SG-
Plan5 [17]). Each of them has some advantages and disadvantages in comparison with the others, in terms of
performance, supported features (e.g. preferences, time-dependent costs, optimization metrics), and licensing.

30

ACANTO

On the other hand, a custom solution can be designed, considering the particular domain supported by the
Activity Planner. Indeed, the problem that the Activity Planner is required to solve consists in finding a sequence
of points of interest that the user should visit, according to some preferences and constraints. This problem
presents many similarities with other well known problems in literature, i.e. the Orienteering Problem [27]
and the Tourist Trip Planning problem [13, 25]. Various algorithms exist to solve these families of problems,
providing optimal or sub–optimal solutions, and applicable to problems of different sizes. For example, optimal
solutions can be found by representing the problem as a Mixed Integer Linear Programming instance to be
optimized by state-of-the-art solvers, when the number of PoIs is limited. Sub–optimal solutions, on the other
hand, are usually found with the adoption of custom metaheuristic search techniques (e.g. genetic or ant colony
optimization algorithms).
To choose the most appropriate solution to implement our Activity Planner, we compared the performance of
an automated planner (OPTIC) applied directly to the high–level PDDL problem with a MILP solver (CPLEX
[19]) applied after encoding the problem as illustrated below:

/***
*
* OPL model and script for Activity Planning

*
***/

/***
*
* DATA

*
***/

// The values specified as "..." represent external parameters that are
// specified in an external file containing all the dynamic data

int n = ...; // number of POIs

int s = ...; // index of starting POI (corresponding to the current location)
int g = ...; // index of final POI (corresponding to the final location)
range POIs = 1..n;

float maxDist = ...; // constraint on the maximum length of the plan
float maxTime = ...; // constraint on the maximum duration of the plan

// Edges
tuple edge {int i; int j;}
setof(edge) Edges = ...;
float dist[Edges] = ...; // length of each Edge
float time[Edges] = ...; // duration required to walk each Edge

float score[POIs] = ...; // score given by the user to each POI
float visitTime[POIs] = ...; // time required to visit each POI

// Decision variables
dvar boolean x[POIs]; // x[i] true iff. POI i is part of the solution
dvar boolean y[Edges]; // y[i] true iff. Edge i is part of the solution
dvar int t[POIs]; // t[i]==n, n>0, iff. POI i is visited at time n

/***
*
* MODEL

*

31

ACANTO

***/

// Objective -> maximize the plan score
maximize sum (i in POIs) score[i]*x[i];
subject to {

// One edge must exit from the start node
sum (<s,j> in Edges) y[<s,j>] == 1;

// One edge must enter to the goal node
sum (<j,g> in Edges) y[<j,g>] == 1;

// One edge must enter each visited node (except s)
forall (i in POIs: i != s)

sum (<j,i> in Edges) y[<j,i>] == x[i];

// One edge must leave each visited node (except g)
forall (i in POIs: i != g)

sum (<i,j> in Edges) y[<i,j>] == x[i];

// The starting node has time counter 1
t[s] == 1;

// To avoid cycles, the time counter must increase each time
// an edge is crossed
forall (<i,j> in Edges)

t[j]-t[i] >= -n*(1-y[<i,j>])+1;

// Constraint on overall length
sum (<i,j> in Edges) y[<i,j>]*dist[<i,j>] <= maxDist;

// Constraint on overall duration
(sum (<i,j> in Edges) y[<i,j>]*dist[<i,j>])

+ (sum (i in POIs) x[i]*visitTime[i]) <= maxDist;

};

/***
* OPL Data

***/

n = 10;
s = 1;
g = 10;

Edges = {
<1,2>, <1,3>, <1,4>, <1,5>, <1,6>, <1,7>, <1,8>, <1,9>, <1,10>,
<2,3>, <2,4>, <2,5>, <2,6>, <2,7>, <2,8>, <2,9>, <2,10>,
<3,2>, <3,4>, <3,5>, <3,6>, <3,7>, <3,8>, <3,9>, <3,10>,
<4,2>, <4,3>, <4,5>, <4,6>, <4,7>, <4,8>, <4,9>, <4,10>,
<5,2>, <5,3>, <5,4>, <5,6>, <5,7>, <5,8>, <5,9>, <5,10>,
<6,2>, <6,3>, <6,4>, <6,5>, <6,7>, <6,8>, <6,9>, <6,10>,
<7,2>, <7,3>, <7,4>, <7,5>, <7,6>, <7,8>, <7,9>, <7,10>,
<8,2>, <8,3>, <8,4>, <8,5>, <8,6>, <8,7>, <8,9>, <8,10>,
<9,2>, <9,3>, <9,4>, <9,5>, <9,6>, <9,7>, <9,8>, <9,10>,

};

dist = [

32

ACANTO

Automated planning (OPTIC) MILP problem (Cplex)
Number of POIs Score Time (s) Score Time (s)

5 (+2) 57.172 0.16 57.172 0.04
10 (+2) 76.999 TO 84.669 0.22
20 (+2) 54.644 TO 120.37 1.47
30 (+2) 45.592 TO 120.717 2.58

Table 4.1: Comparison of the running time and solution quality using both an automated planner (OPTIC) and
a MILP solver (CPLEX) to plan an activity. The maximum allowed time (TO) is set to 90 s, and the size of the
problem (number of POIs) increases from 5 to 30 (+2 because two virtual POIs must be introduced to model
the initial location and the arrival location).

20, 20, 20, 20, 20, 20, 20, 20, 0,
20, 20, 20, 20, 20, 20, 20, 20,
20, 20, 20, 20, 20, 20, 20, 20,
20, 20, 20, 20, 20, 20, 20, 20,
20, 20, 20, 20, 20, 20, 20, 20,
20, 20, 20, 20, 20, 20, 20, 20,
20, 20, 20, 20, 20, 20, 20, 20,
20, 20, 20, 20, 20, 20, 20, 20,
20, 20, 20, 20, 20, 20, 20, 20,

];

score = [0, 33 , 36 , 0 , 17 , 8 , 26 , 50 , 37 , 0];

In table 4.1 are shown the performance in terms of execution time (with a timeout of 90 seconds) and quality of
the solution for problems with an increasing number of points of interest, from 5 to 30. The automated planner
is able to find the optimal solution only for the smallest problem (5 POIs), while for all the others it times out
before converging, achieving a really low quality in comparison with the optimal solution. The MILP solver,
on the other hand, is able to find the optimal solution for all the problem instances, with a maximum running
time of 2.58 s.

4.4 Plan Refinement

During the execution of the planned activity, high-level actions involving user motion are refined into an ex-
ecutable, low level trajectory by running the motion planner described in chapter 3, to find a path connecting
the ?from with the ?to locations indicated in the corresponding <move> action. The motion planner can use
information about the current status of the environment, like the presence of crowded zones, to synthesize paths
comfortable to follow based on the current situation.

4.5 Planning for groups

Until now we have shown the main concepts and ideas adopted to model and solve the problem of Activity
Planning, considering a scenario with a single user. However, in order to achieve the social aspect of “Social”
activities, the planner must support a context where an activity is carried out by more than one person. However,
since the kind of possible actions, constraints and preferences remains the same, a minor extension of the
original model suffices to provide support for a multi-agent context. The planning domain can be extended by
introducing a new type of object to represent an Agent, named “User”. In addition, a score is given by each
user to each PoI. Soft constraints associated to each user (e.g. “the user prefers plans avoiding the use of lifts”)
are modelled as costs given to the different PoIs and connectors between pairs of PoIs:

33

ACANTO

; ; t h e l e v e l o f i n t e r e s t o f an u s e r ? u t o a s p e c i f i c PoI ? p
; ; (i n f e r r e d from t h e u s e r p r o f i l e)
(i n t e r e s t ? u − User ? p − Poi)

; ; t h e c o s t g i v e n by an u s e r ? u t o a s p e c i f i c PoI ? p
; ; (i n f e r r e d from t h e u s e r p r o f i l e)
(p o i c o s t ? u − User ? p − Poi)

; ; t h e c o s t g i v e n by an u s e r ? u t o a l i n k between two PoI s
; ; ? p1 and ? p2 (i n f e r r e d from t h e u s e r p r o f i l e)
(l i n k c o s t ? u − User ? p1 − Poi ? p2 − Poi)

The hard constraints considered by the planner are generated as the conjunction of all the hard constraints of
each user. For example, the constraint on the total duration max-global-time is determined as:

max global time = min
u∈Users

max time allowed(?u)

The metric function to optimize is then the weighted sum of the overall score of the visited PoIs for all the
users, and the overall costs deriving from the violation of the soft-constraints:

metric = w1

∑
p∈ Pois

∑
u∈Users

x[i] interest(u, p) − w2

∑
p∈ Pois

∑
u∈Users

x[i] poi cost(u, p)

− w3

∑
〈p1,p2〉 ∈Links

∑
u∈Users

y[〈p1, p2〉] link cost(p1, p2)

where x[i] is a Boolean indicator variable, indicating whether PoI ith is part of the solution, y[〈pi, pj〉] indicates
wheter the link 〈pi, pj〉 is part of the solution, and w1, w2, w3 ∈ R are weighting factors, allowing us to
give different weights to the overall interest and to the violation of soft constraints involving both PoIs and
connectors.
The remainder of this section illustrates activity planning in a multi-agent context with a simple example in-
volving three users. Figure 4.1 shows the topology of the points of interest used for this scenario. The map
contains six points of interest P1, . . . , P6, with a connection between each pair of them. In addition, a special
“virtual” point is defined (P0), to which are associated both the starting and the final location of the activity (PS
and PG). Table 4.2 shows the worst-case distance and time required to move from each point of interest to all
the others (for simplicity, in this scenario we consider the worst-case walking time equivalent to the distance).
Tables 4.3 to 4.5 display the penalty given by each user to each link and point of interest (corresponding to
violations of some soft constraints), and the level of interest for each PoI. Table 4.6 shows the resulting plan. It
can be seen how the point of interest p1 is reached from pS , indeed the penalty for all the other links incoming
to p1 would be greater. Furthermore, p2 is not visited since the violation of the constraint associated to the first
user would be greater than the obtained score.

34

ACANTO

P1 P2 P3 P4 P5 P6 PG
PS 20 20 20 20 20 20 0
P1 - 20 20 20 20 20 20
P2 20 - 20 20 20 20 20
P3 20 20 - 20 20 20 20
P4 20 20 20 - 20 20 20
P5 20 20 20 20 - 20 20
P6 20 20 20 20 20 - 20

Table 4.2: Worst-case distance (and time) to move from each point of interest to all the others

P1 P2 P3 P4 P5 P6 PG
PS 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0
P1 - 0 | 5 | 0 0 | 0 | 0 5 | 5 | 0 0 | 0 | 15 5 | 0 | 0 0 | 0 | 0
P2 5 | 0 | 0 - 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0
P3 0 | 4 | 0 0 | 0 | 0 - 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0
P4 9 | 0 | 0 0 | 0 | 0 0 | 0 | 0 - 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0
P5 0 | 0 | 8 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0 - 0 | 0 | 0 0 | 0 | 0
P6 0 | 5 | 0 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0 - 0 | 0 | 0

Table 4.3: Cost of each link between pairs of points, representing the violation of some soft constraints, taking
different values for each user (u1 | u2 | u3)

P0 P1 P2 P3 P4 P5 P6

- 5 | 5 | 8 0 | 4 | 0 3 | 3 | 5 10 | 5 | 10 5 | 0 | 5 3 | 3 | 3

Table 4.4: Score given from each user to each point of interest (u1 | u2 | u3)

P0 P1 P2 P3 P4 P5 P6

- 0 | 0 | 0 10 | 0 | 0 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0

Table 4.5: Penalty given from each user to each point of interest, representing the violation of some soft
constraints (u1 | u2 | u3)

nextPOI pS p1
nextPOI p1 p3
nextPOI p3 p4
nextPOI p4 p5
nextPOI p5 p6
nextPOI p6 pG

Table 4.6: Plan generated by the Activity Planner

35

ACANTO

P
1

P
2

P
3

P
4

P
5

P
6

P
0

Figure 4.1: Simple multi-agent planning scenario

36

Chapter 5

Links to other work packages

In this section we highlight the possible links of the Activity Planner with the other work packages composing
the ACANTO project.
The Activity Planner is used to expand an activity suggested by the Activity Generator (WP4) into a possible
plan realizing that activity. The synthesized plan is then executed with the collaboration of the Reactive Planner
(WP5) and the Activity Monitor (WP5), responsible respectively for the refinement (and adjustment) of the plan
depending on the specific actual circumstances, and for monitoring the actual plan execution. The high-level
plan is represented using the formalisms defined within the WP2, to share a common language to express
information across all the ACANTO modules. Each of the high-level actions represent a sequence of low-level
actions directly executable by the FriWalk.
Finally, the high-level action planning component of the Activity Planner could be provided within the cloud
services (WP7), to relieve the local hardware from the computational burden.

37

ACANTO

38

Chapter 6

Conclusions

In this deliverable is presented the general framework implementing the Activity Planner. We described how
abstract high-level actions are parametrized with realistic “physical parameters”, determined by running many
simulations over various different realistic scenarios. Once the simulations have been completed and sensible
values for the parameters of the different actions have been determined, an high-level plan can be synthesized,
according to the recommendations from the Activity Generator. The produced plan tries to maximize user
satisfaction by fulfilling the indicated preferences, while respecting all the imposed hard constraints. When
the plan must be executed, the motion planner is invoked to expand the different high-level actions into a
sequence of motion primitives, generated trying to optimize user comfort by considering both geometrical and
environmental constraints (like for example the crowdedness of a specific zone).
We have shown how all the features required to develop an Activity Planner capable of planning and refining
the activities suggested by the Activity Generator can be implemented. Possible research directions to im-
prove the current solution are the introduction of a direct support for probabilistic distributions for the physical
parameters, to replace the current approach based on a probabilistic threshold values (considering a certain per-
centile of the possible outcomes). Additional future work will focus on the most effective ways to model and
plan activities for groups of people, and on the translation of the planning problem to a Mixed Integer Linear
Program.

39

ACANTO

40

Appendix A

Example scenario

In this appendix we show the complete example scenario, with the results produced during each step. The
environment for our example scenario is described in chapter 2. Specifically, to keep the number of actions
manageable, we consider a subset of the museum composed by ten points of interest. Since this is a simulative
example, crowds occupying different zones of the map are generated randomly for each of the various simu-
lations. In the first stage, all the simulations are run and statistics on the length/time required to move from
one point of interest to another under different levels of crowdedness are produced. In figure A.1 are shown
some of the possible trajectories generated during the simulation stage. For each pair of points of interest, tens
of simulations are run with different crowd densities, and all the results are stored for the successive analysis
phase.
In table A.1 are shown the generated upper bounds of the times to walk from the point of interest PoI0 to all
the other points of interest.

PoI Upper bound
PoI1 30.74
PoI2 29.64
PoI3 33.97
PoI4 42.06
PoI5 40.48

...
PoI10 46.62

Table A.1: Upper bounds of the time to walk from point of interest 1 to all the other connected points of interest

The obtained upper bound values are then injected into the planning problem instance described in chapter 4.
The synthesized high-level plan filled with the information and ready to be given as input to the Execution
Engine is show in table A.2.
In figure A.2 are depicted the upper bounds for the completion times of the different tasks, while in figure A.3
are shown the upper bounds on the total walked distance after each task. Considering these figures it can be
seen how all the constraints on the maximum elapsed time (550) and the maximum walked distance (150) are
respected by the synthesized plan.
Eventually, when the high-level plan must be executed, all the <move> actions are expanded by the motion
planner to comfortable trajectories connecting the two PoIs and avoiding the currently crowded zones. The
synthesized paths can thus be followed by the FriWalk, and the activity completed by the user.

41

ACANTO

Figure A.1: Example of some possible trajectories generated during the simulation stage

nextPOI(pStart, p1)
beforeMotion: < activityExecutionInit >
move: [pStart – p1]
afterMotion: < userActivity p1 >

nextPOI(p1, p4)
beforeMotion: ∅
move: [p1 – p4]
afterMotion: < userActivity p4 >

nextPOI(p4, p5)
beforeMotion: ∅
move: [p4 – p5]
afterMotion: < userActivity p5 >

nextPOI(p5, p6)
beforeMotion: ∅
move: [p5 – p6]
afterMotion: < userActivity p6 >

nextPOI(p6, pGoal)
beforeMotion: ∅
move: [p6 – pGoal]
afterMotion: < activityExecutionTerm >

Table A.2: Sequence of actions implementing an Activity synthesized by the Activity Planner

42

ACANTO

0 100 200 300 400 500 600

nextPOI pS p1

nextPOI p1 p6

nextPOI p6 p7

nextPOI p7 p9

nextPOI p9 p10

nextPOI p10 pG

Figure A.2: Sequence of tasks composing the synthesized high-level plan. For each task is shown the maximum
(worst case) starting and completion time when all the execution times correspond exactly to the upper bounds.

0 20 40 60 80 100 120 140

move pS p1

move p1 p6

move p6 p7

move p7 p9

move p9 p10

move p10 pG

Figure A.3: Sequence of actions composing the synthesized high-level plan involving motion. For each motion
action is shwon the maximum possible walked distance (worst case).

43

ACANTO

44

Bibliography

[1] Gustavo Arechavaleta, Jean-Paul Laumond, Halim Hicheur, and Alain Berthoz. An Optimality Principle
Governing Human Walking. IEEE Transactions on Robotics, 24(1):5–14, Feb 2008.

[2] Maren Bennewitz and Wolfram Burgard. Finding solvable priority schemes for decoupled path planning
techniques for teams of mobile robots. In Proc. of the International Symposium on Intelligent Robotic
Systems (SIRS), 2001.

[3] J Benton, Amanda Jane Coles, and Andrew Coles. Temporal planning with preferences and time-
dependent continuous costs. In ICAPS, volume 77, page 78, 2012.

[4] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational Geometry: Algo-
rithms and Applications. Springer-Verlag TELOS, Santa Clara, CA, USA, 3rd ed. edition, 2008.

[5] Enrico Bertolazzi and Marco Frego. G1 fitting with clothoids. Mathematical Methods in the Applied
Sciences, 38(5):881–897, 2015.

[6] Enrico Bertolazzi and Marco Frego. Interpolating clothoid spline with curvature continuity. Mathematical
Methods in the Applied Sciences, 2016. Submitted.

[7] Paolo Bevilacqua, Marco Frego, Enrico Bertolazzi, Daniele Fontanelli, Luigi Palopoli, and Francesco
Biral. Path planning maximising human comfort for assistive robots. In IEEE Multi-Conference on
Systems and Control. IEEE Press, 2016.

[8] Maria Fox and Derek Long. Pddl2.1: An extension to pddl for expressing temporal planning domains. J.
Artif. Intell. Res.(JAIR), 20:61–124, 2003.

[9] Thierry Fraichard and Alexis Scheuer. From reeds and shepp’s to continuous-curvature paths. Robotics,
IEEE Transactions on, 20(6):1025–1035, Dec 2004.

[10] Marco Frego, Enrico Bertolazzi, Francesco Biral, Daniele Fontanelli, and Luigi Palopoli. Semi-analytical
minimum time solutions for a vehicle following clothoid-based trajectory subject to velocity constraints.
In Proc. of European Control Conference 2016 (ECC16), 2016.

[11] Alessandro Furieri. SpatiaLite. https://www.gaia-gis.it/fossil/libspatialite/
index, 2015-09-07.

[12] Jonathan D. Gammell, Siddhartha S. Srinivasa, and Timothy D. Barfoot. Informed rrt*: Optimal
sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic. In Inter-
national Conference on Intelligent Robots and Systems (IROS), pages 2997–3004. IEEE Press, 2014.

[13] Damianos Gavalas, Charalampos Konstantopoulos, Konstantinos Mastakas, and Grammati Pantziou.
A survey on algorithmic approaches for solving tourist trip design problems. Journal of Heuristics,
20(3):291–328, 2014.

45

https://www.gaia-gis.it/fossil/libspatialite/index
https://www.gaia-gis.it/fossil/libspatialite/index

ACANTO

[14] Alfonso Gerevini and Derek Long. Plan constraints and preferences in pddl3. The Language of the
Fifth International Planning Competition. Technical Report, Department of Electronics for Automation,
University of Brescia, Italy, 75, 2005.

[15] Shilpa Gulati, Chetan Jhurani, Benjamin Kuipers, and Raul Longoria. A framework for planning com-
fortable and customizable motion of an assistive mobile robot. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 4253–4260. IEEE, 2009.

[16] Malte Helmert. The fast downward planning system. J. Artif. Intell. Res.(JAIR), 26:191–246, 2006.

[17] Chih-Wei Hsu, Benjamin W Wah, Ruoyun Huang, and Yixin Chen. New features in sgplan for handling
preferences and constraints in pddl3. 0. In Proceedings of the Fifth International Planning Competition,
pages 39–42, 2006.

[18] Roger L. Hughes. A continuum theory for the flow of pedestrians. Transportation Research Part B:
Methodological, 36(6):507 – 535, 2002.

[19] IBM. IBM ILOG CPLEX Optimization Studio. https://www.ibm.com/software/commerce/
optimization/cplex-optimizer/, 2015-12.

[20] Sertac Karaman, Matthew R. Walter, Alejandro Perez, Emilio Frazzoli, and Seth Teller. Anytime motion
planning using the rrt*. In International Conference on Robotics and Automation (ICRA), pages 1478–
1483. IEEE Press, 2011.

[21] Steven M. LaValle. Planning algorithms. Cambridge University Press, 2006.

[22] Der-Tsai Lee. Proximity and reachability in the plane. Technical Report R-831, Dept. Elect. Engrg., Univ.
Illinois, Urbana, IL, 1978.

[23] Tsai-Yen Li and Hsu-Chi Chou. Motion planning for a crowd of robots. In International Conference on
Robotics and Automation (ICRA), pages 4215–4221. IEEE Press, 2003.

[24] Andrea Micheli, Minh Do, and David E. Smith. Compiling away uncertainty in strong temporal plan-
ning with uncontrollable durations. In Proceedings of the twenty-fourth international joint conference on
artificial intelligence (IJCAI), pages 1631–1637. AAAI Press, 2015.

[25] Wouter Souffriau and Pieter Vansteenwegen. Tourist trip planning functionalities: State–of–the–art and
future. Current Trends in Web Engineering, pages 474–485, 2010.

[26] Adrien Treuille, Seth Cooper, and Zoran Popović. Continuum crowds. ACM Trans. Graph, 25:1160–1168,
2006.

[27] Pieter Vansteenwegen, Wouter Souffriau, and Dirk Van Oudheusden. The orienteering problem: A survey.
European Journal of Operational Research, 209(1):1–10, 2011.

46

https://www.ibm.com/software/commerce/optimization/cplex-optimizer/
https://www.ibm.com/software/commerce/optimization/cplex-optimizer/

	Executive Summary
	 Introduction
	 Framework
	Example scenario

	 Motion Planning
	State of the Art
	Problem Description
	Geometric subproblem
	Clothoids
	Kinematic model
	Approach: Stochastic search

	Walking in the crowd
	Map representation

	 High level planning and refinement
	Formalization of Activities
	Temporal Uncertainty
	Automated Planning
	Plan Refinement
	Planning for groups

	 Links to other work packages
	 Conclusions
	 Example scenario

