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Executive Summary

This deliverable builds upon D3.5 and extends the work of analyzing the social context from
both platform view, as well as the site-wide view. More specifically, we focus our research
and development efforts to answer the following questions: (i) how can one locate a person of
interest in a given surveillance camera network? (ii) how can one identify unusual behavior in
surveillance  footage?  (iii)  how  can  monitoring  low  level  facial  appearance  cues  help
modeling social behavior from the platform's perspective? 

The answer to the first question is person re-identification (re-ID). In this deliverable, we dive
deep into  the underlying components  of  person re-ID and bring  contributions  on several
levels. We first address detecting and tracking of pedestrians using surveillance cameras. We
review  existing  work  in  pedestrian  detection,  commonly  used  benchmarks  along  with
evaluation protocols and investigate the performance of a general purpose publicly available
object  detection  system  on  pedestrian  detection.  By  leveraging  existing  multimodal
pedestrian data collections along with recent deep learning developments, we further present
results  of  a  novel  cross-modal  deep  representation  framework  designed  to  “robustify”
pedestrian detection under difficult recording conditions. Finally, we conduct a systematic
analysis of person re-identification approaches and gain important insights into trends and
good practices used in person re-ID.

To  answer  the  second  question,  we  conducted  a  research  study  to  identify  common
approaches for anomaly detection in videos and pushed state-of-the-art further by developing
a deep learning framework that automatically learns feature representations while combining
appearance and motion from surveillance videos.

Finally, we extend social modeling from the platform's point of view to include face-to-face
interactions with walker users. Here we base our statistics on face analysis components and
combine them into a rule-based system able to cast probabilistic predictions about potential
face-to-face social interactions.

3



ACANTO______________________________________________________________

 1. Introduction

Recalling from D3.5,  one of  the main goals  of  task T3.3,  to  which both D3.5 and D3.6
(current document) subscribe, is to contribute to a high level of situational awareness meant
to support the correct functionality of the FriWalk. In other words, T3.3 is concerned with
finding relevant pieces of information from the vast pool of social context cues, that would
lay the foundation for any activity execution and monitoring logic.

While sensing the environment, we are relying in ACANTO not only on sensors placed on
the FriWalk itself, but also on distributed sensors, such as surveillance cameras that can be
accessed in  public places,  like museums or shopping malls.  Indeed,  surveillance cameras
offer  a  much wider  and complete  view on what  is  happening in  the  environment,  when
compared  with  pure  platform  perspective.  In  such  surveillance  scenarios,  being  able  to
recognize certain types of personnel (e.g. a nearby policeman, a shop assistant or a close
friend) is sometimes a matter of critical importance. Imagine for a second our FriWalk user
lost and disoriented in a crowded mall, or even worse, falling a victim of a theft on an empty
pedestrian sidewalk, looking helpless as the thieve runs away with his/her valuables. In order
to approach situations like these, we propose technological solutions to assist the elderly in
finding the right person at the right time. Towards this goal, we investigate recent work in
person  re-identification  and  dive  deep  into  its  structural  components,  such  as  pedestrian
detection and tracking, as well as pedestrian retrieval. 

We first  take a closer look at  object  detection with a focus on detecting pedestrians and
evaluate state-of-the-art approaches on typically used pedestrian benchmarks. A subsequent
person re-identification module enables identifying persons of interest in the form of a single
image query retrieval. Secondly, we leverage existing multimodal pedestrian data collections
along with recent deep learning developments to propose a cross-modal deep representation
framework for robust pedestrian detection under difficult recording conditions. Finally, we
complement the collection of context-related services with a component able to automatically
locate  anomalous  dynamic  behavior  in  surveillance  videos.  Our  deep  learning-based
approach combines appearance and motion cues in a novel late fusion strategy.

To deal with social interactions, we switch perspective to the platform's point of view and
study the potential of facial cues in revealing face-to-face interactions. We combine head pose
and speech patterns into a probabilistic model which we then deploy in a real-time service
ready to be integrated into the ACANTO framework.
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 2. Person re-identification using surveillance cameras

Person re-identification (for  short  person re-ID) is  a  fundamental  aspect  of  multi-camera
tracking and is  concerned with establishing correspondences between images of a  person
captured from different cameras. From a technical perspective, person re-ID can be broken
down into three sub-modules: person detection, person tracking and person retrieval. The first
two components are considered independent computer vision tasks, such that most work done
on person re-ID focuses on person retrieval, i.e. answering the question of whether a person
of interest (query) is present or not in a gallery of person instances and if so, retrieve the
instance(s) that match the query. In practice though, this question is typically implemented as
retrieving the top k best matches from the gallery, closest (according to some distance metric)
to the query. Person re-ID has gained a great deal of attention in the last years, evidence of
this being the increasing share of papers accepted at major CV venues (see Fig. 2.1). 

Fig. 2.1. Trends in the number of publications on person re-ID in top computer vision venues
(courtesy of [1])

Interestingly,  the  “explosion”  of  publications  in  this  field  seems  to  be  perfectly  aligned
temporally with the Deep Learning revolution. In fact, there's no surprise that most, if not all,
recent approaches to person re-ID make some use of deep models.

We note that in ACANTO, for solving person re-ID -related tasks, such as retrieving persons
of interest (e.g. policeman, medical caregiver, etc.), one needs only pedestrian detection and
retrieval.  Tracking  is  typically  used  in  situations  in  which  the  temporal  dimension  is  of
interest. We therefore focus here only on detection and retrieval of pedestrians.

 2.1. Pedestrian detection from surveillance cameras – an overview

In order to address the problem of people re-identification in a surveillance scenario, we have
performed, as a first step, a study aimed at determining the performance of existing models
on the task of pedestrian detection in low resolution images. We partly motivate the setup
shift from omni-directional to surveillance cameras by the limitations of the former approach
(which  experienced  accuracy  difficulties)  and  partly  by  the  recent  progress  of  deep
convolutional  models  for  object  detection.  We  argue  that  the  increase  in  processing
complexity  for  analyzing  pedestrians  is  a  negligible  drawback  considering  the  hardware
support provided in cloud computing nowadays and comparing with the benefits in accuracy
gained by deploying deep models.
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Pedestrian detection is seen as a canonical instance of the much larger problem of object
detection (OD) with large applicability in the automotive industry, video surveillance and
robotics  [2]. It is often used as a playground for exploring ideas that sound promising for
generic OD. Despite extensive research done in the field, recent papers still report significant
improvements, suggesting that there's  still  room to reach a saturation point.  On the other
hand, recent general OD systems have become quite competitive in performing pedestrian
detection  alone,  due  to  a  dominant  representation  of  the  pedestrian  class  in  general  OD
benchmarks, such as PASCAL VOC [3], [4] , IMAGENET [5] or MSCOCO [6]. According
to recent surveys [2], the driving force for performance in pedestrian detection has been the
attention  to  features.  The  authors  also  stress  the  importance  of  optical  flow and context
information as complementary sources of information that are likely to boost the accuracy.
Needless to say, as in many other vision challenges, state-of-the-art in pedestrian detection is
nowadays  claimed  by  Deep  Learning  models  [7]–[9] and  most  of  the  research  effort  is
channeled  in  exploiting  additional  cues  or  slightly  modified  architectures  to  improve  a
baseline that is already competitive.

In what follows, we present results of a preliminary study aimed at identifying available OD
systems that perform well on pedestrian detection, focusing on solutions for which source
code is available. A similar recent analysis [10] investigating the potential of Faster R-CNN
for pedestrian detection has shown that by compensating for the insufficient resolution of
feature maps for handling small instances as well as for the lack of any bootstrapping strategy
for mining hard negative examples, one can turn a general OD system into a state-of-the-art
pedestrian detector. We first  review common benchmarks along with typical  performance
evaluation protocols.

 a) Pedestrian detection benchmarks
One of the oldest datasets for pedestrian detection is INRIA [11] which stands out thanks to
high  quality  annotations  of  1800+  pedestrians  in  various  settings  (e.g. city,  beach,
mountains). While this is particularly advantageous for training (in fact, INRIA seems to be a
diverse enough dataset to allow good generalization to other collections  [2]), INRIA is not
among the most commonly used benchmarks for pedestrian detection. Instead, Caltech-USA
[12] has gained a lot of popularity in the recent years. Caltech brings along 10 hours of video
footage recorded at 30Hz from a vehicle driving in regular traffic on the streets of LA, US.
Annotations sum up to 350k bounding boxes (BBs) corresponding to roughly 2300 unique
pedestrians. Few example frames can be seen in Fig. 2.1.1, in which one can spot two kinds
of  annotations:  solid  green rectangles,  corresponding to  full  size  pedestrians,  and dashed
yellow boxes depicting the visible areas of occluded pedestrians. 

As the authors  notice  [12],  the probability  map encoding the likelihood of a  pixel  to  be
occluded given that the pedestrian is occluded is highly biased towards the lower part of the
BB, the kind of additional information one can exploit  in order to  improve detection.  In
addition,  Caltech  contains  temporal  correspondences  between  BBs  as  well  as  detailed
occlusion labels. The authors have released source code implementing the evaluation protocol
and are also keeping track of recent work, by allowing other authors to submit their results
online. All these features have made Caltech-USA the most popular benchmark for pedestrian
detection and tracking.
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Figure 2.1.1. Sample images from Caltech-USA dataset along with ground truth annotations.
The  annotations  contain  full  pedestrian  bounding  boxes  (ignoring  occlusions)  –  green
rectangles, as well as boxes showing the visible area – yellow dashed rectangles.

 b) Performance measures
Performance  evaluation  tools  for  Caltech  have  been  initially  developed  in  [13] and
subsequently reviewed in  [12].  The current  protocol  defines  four  evaluation scenarios  by
splitting the 11 recorded sessions (S0-S10) into two groups: S0-S5 and S6-S10. First two
scenarios, ext0 and ext1 allow authors to develop systems on any external data and test them
on S0-S5 and S6-S10 respectively. The third scenario (cal0) asks for a 6-fold cross-validation
over S0-S5, while in the fourth (cal1), authors are asked to train on S0-S5 and report results
on S6-S10. The richness of the evaluation scenarios allows for previous systems, trained on
existing data collections, to be tested on Caltech.

 The core performance measure of the evaluation process in Caltech is the overlapping area
between a detected bounding box  and the corresponding ground truth box . As
in PASCAL challenge, this measure is computed as the intersection over the reunion (IoU
between the two BBs and, in order for a detection to be counted as a potential match, IoU
needs  to  exceed  0.5.  Detections  with  highest  confidence  are  matched  first,  whereas
ambiguities are solved in a greedy fashion. At the end, unmatched  boxes are counted
as false positives, while unmatched  as false negatives. From the above counts, the miss
rate (MR) versus the number of false positives per image (FPPI) is built in log-log scale, by
varying the threshold on the detection confidence. Additionally, the log-average miss rate is
computed by averaging MR over evenly spaced FPPI values in the range  , to
summarize the performance of a detector by one single value. In practice, this average value
is close (if not similar) to the MR value of the detector at FPPI equal to .

Another important aspect of the evaluation protocol is that the authors have isolated a set of
ground truth samples for which the BBs of the pedestrians are at least 50 pixels tall and
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correspond to cases of no or partial occlusions. This subset is called  reasonable and it is
widely used in literature to report pedestrian detection performance.

 c) SSD as a pedestrian detector
A recent study  [14] has introduced a unified deep neural network framework for general
object detection based on discretizing the output space of BBs into a set of default boxes over
different aspect ratios and scales per feature map location. Their system, called Single Shot
multibox  Detector  (SSD), is  interesting  because  it  completely  eliminates  traditional
bounding-box proposal generation as well as feature resampling, making it much faster at
testing  time,  while  maintaining  competitive  accuracy.  This  makes  it  very  appealing  for
practical  scenarios  such  as  in  ACANTO, where  monitoring  pedestrians  in  real  time  is  a
valuable asset. 

The core of SSD is predicting category scores and box offsets for a fixed set of default BBs
using small convolutional filters applied to feature maps. SSD has been validated on several
general  OD  data  collections  (including  PASCAL  VOC  [3],  [4] ,  IMAGENET  [5] and
MSCOCO [6]), all of which contain a class for pedestrians, under various settings. Most of
the models are available online for testing. We took the liberty of testing them on detecting
pedestrians using Caltech-USA as benchmark and the testing protocol explained in 2.1.b).
Figure 2.1.2 a) highlights the MR vs. FPPI curves of several models (including some recent
ones,  specifically  developed for the task  [2],  [8],  [15]).  Despite  achieving only moderate
results  on the MR scale (which are still  higher than the baselines reported in  [12]), SSD
models  perform  pedestrian  detection  reasonably  well  (in  particular  the  ones  trained  on
PASCAL datasets)  considering  they  are  only  general  OD  systems.  Figure  2.1.2  b)  is  a
qualitative proof of this statement. We are, however, still far from what is reported as human
performance on Caltech  [16],  i.e. 5.6% miss rate in the vicinity of 1 false positive per 10
images (against approx. 30% obtained with the best SSD model).

  

  a)          b) 
Fig.  2.1.2  Performance  comparison  of  SSD  models  on  Caltech  pedestrian  detection
benchmark. The numbers represent the percentage of miss rate (MR) at a false positive per
image  (FPPI)  of  1  every  10  images.  SSDs  are  compared  with  Katamari,  TA-CNN  and
Checkerboards, all which, to the best knowledge of the authors, are not publicly available. As
a reference, a human operator misses, at the same FPPI rate, approx. 5.6% true positives,
according to some studies.
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This  motivates  a  further  study on how to improve pedestrian detection,  especially  under
challenging conditions (such as crowded public spaces).

 2.2. Exploiting multiple modalities for improved pedestrian detection

Looking back on pedestrian detection research, particularly the more realistic playgrounds in
which pedestrians are captured in cluttered background or undergo substantial occlusions, as
we expect to be the case in ACANTO's shopping malls and museum scenarios, we notice two
main trends that drive recent advancements: Deep Learning – undoubtedly one of the key
engines to improve performance [8], [9], [17] and the adoption of additional sensors (such as
thermal or depth cameras) that bring complementary information to tackle problems such as
adverse illumination conditions and occlusions [18], [19][20]. However, the vast majority of
wide  camera  networks  in  surveillance  systems  still  employ  traditional  RGB sensors  and
detecting pedestrians in case of illumination variation, shadow, and low external light remains
a challenging open issue.

Fig. 2.2.1. Overview of the proposed framework. Our approach relies on two networks. The
first network is used to learn a nonlinear feature mapping between RGB and thermal image
pairs. Then, the learned model is transferred to a target domain where thermal inputs are no
longer available and a second network is used for learning a RGB-based pedestrian detector.

We take inspiration from recent work showing the benefits of leveraging cross-modal data in
solving detection and recognition tasks  [21][22] and combine it  with recent unsupervised
deep  learning  techniques  to  develop  a  CNN-based  approach  for  learning  cross-modal
representations for pedestrian detection which does not require bounding box annotations.
More specifically, we use multispectral data and CNNs to learn a mapping from RGB space
to  thermal  representation  without  human  supervision  (see  Fig.  2.2.1  for  an  overview).
Importantly, thermal data are not needed at testing time to perform pedestrian detection from
RGB images. The intuition behind using thermal data is that by doing so, there's a good
chance to increase the discrimination power of the classifier by addressing difficult images
that  look like  pedestrians  in  the  RGB space  (such as  electric  poles  or  trees)  but  have  a
completely different representation (and thus are much easier to discriminate) in the thermal
space (see Fig. 2.2.2. for few examples). In other words, we aim at addressing hard negative
samples by looking at them in a space that makes them easy negatives.
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Fig.  2.2.2.  Exploiting  thermal  data  in  addition  to  RGB  samples  makes  it  is  easier  to
discriminate among pedestrians and background clutter.

Our  proposed  architecture  is  based  on  two  different  CNN  networks,  associated  to  the
reconstruction and the detection tasks,  respectively. The first  deep model,  i.e. the Region
Reconstruction  Network  (RRN),  is  a  fully  convolutional  network  trained  on  pedestrian
proposals collected from RGB-thermal image pairs in an unsupervised manner. RRN is used
to learn a non-linear mapping from the RGB channels to the thermal channel. In the target
domain, only RGB data are available and a second deep network, the Multi-Scale Detection
Network  (MSDN),  embedding  the  parameters  transferred  from RRN,  is  used  for  robust
pedestrian detection. MSDN takes a whole RGB image and a number of pedestrian proposals
as input and outputs the detected BBs with associated scores. In the test phase, detection is
performed with MSDN and only RGB inputs are needed.

The  training  process  involves  two  main  phases.  In  the  first  phase,  RRN  is  trained  on
multispectral data (i.e. pairs of RGB-thermal images). The front-end convolutional layers of
RRN are initialized using the parameters of the 13 convolutional layers of the VGG-16 model
[23] pretrained on ImageNet  dataset.  The remaining parameters  are  randomly initialized.
Stochastic Gradient Descent (SGD) is used to learn the network parameters. In the second
phase, the parameters of MSDN are optimized using RGB data and pedestrian bounding box
annotations from the target domain. MSDN contains two sub-networks (Subnet A and B), one
of which is a copy of the convolutional layers from RRN. These layers, learned in the first
phase, are used to initialize part of MSDN in the second phase. Fine-tunning for MSDN is
performed on the target pedestrian dataset using back-propagation and SGD.

Datasets
We validate our framework on two public datasets: KAIST multispectral pedestrian dataset
[18] and Caltech-USA. KAIST contains images captured under various traffic scenes with
different illumination conditions (i.e. data recorded both during day and night). The dataset
consists  of  95k aligned  RGB-thermal  image pairs,  of  which  50.2k samples  are  used  for
training and the rest for testing. A total of 103,128 dense annotations corresponding to 1,182
unique pedestrians are available. We follow the evaluation protocol outlined in  [18] in our
experiments. The performance is evaluated on three different test sets, denoted as Reasonable
all, Reasonable day and Reasonable night. Reasonable here indicates that the pedestrians are
at most partially occluded and contain more than 55 pixels height. The day and night sets are
obtained from the Reasonable all set according to the capture time. From Caltech we used the
Caltech-All and Caltech-Reasonable settings.
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Experimental details
We implemented our framework using Caffe [24] on an Intel(R) Xeon(R) CPU E5- 2630 with
a single CPU core (2.40GHz), 64GB RAM and an NVIDIA Tesla K80 GPU. We employ ACF
[25] to generate pedestrian proposals for training both the reconstruction and the detection
network with a low detection threshold of -70 as in [9] to obtain a high recall of pedestrian
regions. In the test phase we also use ACF and consider the test proposals available online1. It
is worth nothing that, while we focus on ACF, our cross-modality learning approach can be
used in combination with an arbitrary proposal method. 

For training the reconstruction network, we use the whole training set of the KAIST dataset.
As  thermal  images  captured  from  an  infrared  device  have  relatively  low  contrast  and
significant noise, we perform some basic processing, such as adaptive histogram equalization
and  denoising.  By  computing  pedestrian  proposals  applying  ACF, we  end  up  creating  a
dataset of about 20K frames for training the reconstruction network. All the frames are then
horizontally  flipped  for  data  augmentation.  The  mini-batch  size  is  set  to  2  and  a  fixed
learning rate   is used to guarantee smooth convergence.  We train the RRN for
about 10 epochs. 

For training the detection network, we follow previous work [15] and for the Caltech dataset
we construct a training set  where every every 3rd frame is used. Instead, for the KAIST
dataset we adopt the standard training protocol and every 20th frame is considered. For both
datasets, we use the same protocol for training MSDN. Similarly to RRN training, the data
are flipped horizontally for data augmentation.  Each mini-batch consists  of 80 pedestrian
proposals randomly chosen from one training image. Positive samples with a ratio of 25% are
taken from the proposals which have an IoU overlap with the ground truth of more than 0.5,
while negative samples are obtained when the IoU overlap is in the range of [0, 0.5]. SGD is
used to optimize MSDN with the momentum and the weight decay parameters set to 0.9 and
0.0005, respectively. The network is trained with 8 epochs using an initial learning rate of
0.001 and drop by 10 times at the 5th epoch.

Results on KAIST
On KAIST dataset we derive a series of model variations for our CMT-CNN (Cross-Modality
Transfer CNN), using different settings:

• CMT-CNN-SA – only Subnet A from MSDN is used for predicting pedestrian BBs.
• CMT-CNN-SA-SB (ImageNet)  –  both  MSDN subnets  are  used but  they  are  both

initialized with VGG16 convolutional weights pretrained on ImageNet
• CMT-CNN-SA-SB (random) – similar to previous case, with the difference being that

the weights of Subnet B are randomly initialized
• CMT-CNN – finally, this is the model for which Subnet B of MSDN is initialized

with the weights of the RRN, previously pretrained on pairs of RGB-thermal images
from KAIST

1 http://www.vision.caltech.edu/Image$_ $Datasets/CaltechPedestrians/
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Table 2.2.1 shows the results of the above models on KAIST dataset. The table reveals the
benefits  of  using  thermal  data  for  improving pedestrian  detection.  Qualitative  results  are
shown in Fig. 2.2.3, where we compare our CMT-CNN model (last row) with a standard
pedestrian detector (ACF, top row) as well as one variation of our model (CMT-CNN-SA,
middle  row).  We note  a  great  reduction  in  false  positives,  as  we move  down the  rows,
particularly in the last one.

Fig. 2.2.3. Examples of pedestrian detection results under different illumination conditions on
the KAIST multispectral  pedestrian dataset:  (top)  ACF detector, (middle)  CMT-CNN-SA,
(bottom) CMT-CNN

Results on Caltech
We tested the same model variants described above, to which we added CMT-CNN-SA-SB
(RGB-KAIST), in which the weights of VGG16 used to initialize Subnet B of MSDN were
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pretrained on KAIST (using only RGB images). The results of the comparison are shown in
Tab 2.2.2. Again, the numbers in the table confirm the effectiveness of our approach. 

We further compare CMT-CNN against a large number of published results on Caltech. We
consider both  All and  Reasonable subsets of Caltech and the following approaches: Viola-
Jones (VJ) [26], Histograms of Oriented Gradients (HOG) [11], DeepCascade+ [17], LDCF
[27], SCF+AlexNet  [7], Katamari  [2], SpatialPooling+  [28], SCCPriors  [29], TA-CNN  [8],
CCF  and  CCF+CF  [30],  Checkerboards  and  Checkerboards+  [15],  DeepParts  [31],
CompACT-Deep [32] and RPN+BF [10]. Results can be visualized in Fig. 2.2.4.

   a)      b)
Fig. 2.2.4. Quantitative results on Caltech dataset (All – a) and Reasonable – b)) 

 2.3. Building pedestrian heat maps from detections

Recalling  from  D3.5,  heat  maps  were  created  using  omnidirectional  cameras,  by  first
detecting people's head (using motion cues and segmentation approaches) and inferring their
feet  coordinates  (step  called  foot  correlator),  followed  by  a  dewarping  process  of  these
coordinates, knowing camera calibration parameters, and finally updating the heat map along
the temporal axis. One of the main drawbacks of using omnidirectional settings was the fact
that the heat maps were much less accurate at the periphery, due to perspective distortion. In
addition,  the  presence  of  objects  in  the  scene  that  would  occlude  people's  feet  was  an
additional factor affecting the quality of the heat maps. We focused on improving estimating
the positions of the feet by means of geometric tools, however we noted a very marginal
improvement in the final quality of the heat maps. We therefore decided to switch to general
surveillance cameras.
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What  we propose  now in  the  surveillance  setting  is  using  the  detection  bounding  boxes
(BBs), alongside with scene geometry and few assumptions in order to accumulate pedestrian
trajectories into heat maps. More specifically, for every detected pedestrian in a surveillance
image,  we  consider  the  bottom midpoint  on  the  BB as  an  anchor  point  (similarly  to  a
projection point) and use this to represent a person on the flat surface captured by the camera.
We therefore assume (as before,  in the omnidirectional case) that the surface onto which
pedestrians are walking is flat. Knowing camera geometry, we can project a given pixel from
the  camera  plane  onto  a  new  coordinate  space  where  we  compensate  for  the  camera
perspective distortion. In a very simplified approach, we are looking at solving a standard
planar homography problem, where the objective is to estimate a transformation  matrix

, that maps pixel coordinates from the camera plane to a new set of coordinates in which
the perspective distortion has been compensated for (alongside a given planar surface). An
example of such a transformation can be seen in Fig. 2.3.1. Estimating matrix  is done by
providing a set of corresponding 2D points between the two views.

Fig. 2.3.1. Example of a planar homography. Original image (left) is homographically
transformed so that the floor plane appears with no perspective distortion (right). Matrix  is

determined by solving the matching between the 4 corresponding points.

Having the floor compensated for perspective distortion gives us the base for the heat map,
onto which the accumulated pedestrian traces will be overlaid. Similarly to D3.5, we assume
the pedestrian footprint to be a circle and for each pair of coordinates in the original image
(corresponding to a detected BB), we “paint” an area in the heat map that correspond to the
considered circle. Accumulating these footprints over a temporal window gives us the final
heat map.

Figure 2.3.2 shows a real world example of a heatmap created using our proposed approach.
The images  were taken from the “Mall  Dataset”  [33],  containing surveillance footage of
people  walking  along  a  mall  corridor.  We first  extract  pedestrian  bounding  boxes  and
represent each box using the bottom midpoint as anchor, as described above. We then take a
reference frame from the surveillance collection that contains as few pedestrians as possible
and back-project it to correct for the perspective distortion. Onto that image, we paint the
pedestrian trajectories over time (knowing their 2D locations), using a “brush” in the form of
a disc proportional to the footprint left by a pedestrian.
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Fig. 2.3.2. Sample images from the Mall Dataset (up row). Heat map overlaid onto a
reference image (left) and the same heat map projected to compensate for the perspective

distortions (right).

 2.4. Person re-identification – an overview

From a computer vision perspective, one of the main difficulties person re-ID research has to
overcome is finding a good representation of a person, i.e. extracting discriminative enough
features such as to have a robust enough representation able to control the within-class and
between-class variances in order to have the former smaller than the latter. Assuming that
detection and tracking are possible, then the first objective towards person re-ID is learning a
visual descriptor. The simplest low-level visual descriptors are appearance-based. They rely
on visual cues such as color and texture to describe the appearance. These descriptors are
most sensitive to changes in illumination, pose or camera viewpoint. If we add to the mix the
unconstrained  nature  of  the  recording  environment  (which  translates  into  lack  of
cooperativeness or potential presence of occlusions or background clutter),  as well as the
difficulty of ensuring high quality data (resolution, frame rate), then we have a clearer picture
of why this task is particularly difficult. While much effort has been channeled into finding a
good representation for re-ID, other works have been shifting the focus towards distance
metric  learning.  These  methods  aim  at  learning  appropriate  distance  metrics  that  can
maximize the matching accuracy regardless of the choice of appearance representation. The
main idea here is to learn a metric in the space defined by image features that keep those
coming from the same class closer, while the ones coming from different classes further
apart. In the context of re-ID, the image features are appearance descriptors across camera
views and the aim is to learn a distance metric in the appearance space that maximizes the
distance between descriptors of different people and minimizes the distance for descriptors of
the same person. 

In spite of all the challenges, the community has found ways to push the advancements in
person re-ID, often exploiting context information (such as camera geometry), but mostly
taking advantage of deep learning (ever since the first two publications [34], [35] appeared in

15



ACANTO______________________________________________________________

2014), which offers a highly versatile way of representing data, given that enough of them are
available  for  training.  In  what  follows,  we  present  a  small  survey  of  most  recent  work
published at CVPR this year, in order to identify trends in dealing with the challenges in
person  re-identification.  First  though,  we  will  present  common  benchmarks  used  in  the
community  (summarized  in  Tab.  2.4.1.),  as  well  as  most  frequently  reported  evaluation
metrics.

Commonly used datasets:
• VIPeR:  VIPeR  [36] is  the  most  tested  benchmark  in  person  re-ID.  The  dataset

contains  632 pedestrian image pairs  taken by two different  cameras.  The cameras
have different viewpoints and is not free from illumination variations. The images are
cropped  and  scaled  to  be  128  ×  48  pixels.  This  is  considered  one  of  the  most
challenging  datasets  for  automated  person  Re-ID.  Typically,  10  random train/test
splits are used for stable performance, and each split has 316 different identities in
both the training and testing partitions.

• iLIDS  [37]: captured at an airport arrival, this dataset contains 476 images of 119
person  identities  captured  with  two  non-overlapping  cameras.  On  average,  each
identity is represented by 4 different images, with a minimum of 2. The dataset has
considerable  illumination  variations  and  occlusions  across  the  two  cameras.  All
images are normalized to 128 × 64 pixels.

• PRID 450S [38]: this dataset consists of 450 images pairs of pedestrians captured by
two  non-overlapping  cameras.  The  main  challenges  are  related  to  changes  in
viewpoint, pose as well as significant differences in background and illumination. The
widely adopted experimental protocol on this datasets is that a random selection of
half the number of persons is used for training and the rest for testing. The procedure
is repeated for 10 times, then the average performance is reported.

• CUHK01 [39]: contains 971 identities captured from two camera views (A and B) in
a campus environment. Camera view A captures frontal or back views of a person
while camera B captures the person’s profile views. Each person identity has 4 images
with two from each camera, summing up a total of 3,884 images.

• CUHK03 [35]: contains 1,360 identities captured by six surveillance cameras in a
similar campus environment. Each identity is captured by two disjoint cameras. In
total  there  are  13,164  images  with  each  identity  having  on  average  4.8  images.
Differently  from  previous  datasets,  this  one  provides  two  types  of  annotations,
including manually annotated bounding boxes (called  labeled) and bounding boxes
detected using DPMs (detected).

• Market-1501 [40]: this is currently the largest benchmark in person re-identification,
comprising 1,501 identities and 32,668 images captured using 6 cameras in front of a
supermarket in Tsinghua University. The bounding boxes were detected using DPMs.
Half of these identities (about 13k images) are used for training, while the remaining
half (about 19k images) are used for testing. During testing 3,368 images are taken as
the probe to identify the correct identities on the testing set.

Evaluation  metrics:  The  most  commonly  used  evaluation  metric  for  person  re-ID  is  the
cumulative matching characteristic curve (CMC). CMC reflects the fact that person re-ID is
formulated as a ranking problem, where elements from the gallery are ranked based on their
comparison with the  probe.  The CMC curve  shows the  probability  that  a  query  identity
appears in different-sized candidate lists. This evaluation method is only accurate if there is
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only one single ground truth image in the given query, which seems to be the case for most
benchmarks.  However,  in  some cases  (e.g. Market-1501) there  are  multiple  ground truth
samples  for  each  query. In  these  situations,  CMC cannot  distinguish  between algorithms
experiencing different recall  rates. As a result,  Rank-1 recognition rates along with mean
average precision (mAP) values have been adopted in many papers.

Tab. 2.4.1 Summary of most commonly used benchmarks for person re-ID

Dataset Name Release Year no. IDs no. Images no. Cameras Label type
VIPeR [36] 2007 632 1264 2 manual
ILIDS [37] 2009 119 476 2 manual

PRID450S [38] 2014 450 900 2 manual
CUHK01 [39] 2012 971 3884 2 manual
CUHK03 [35] 2014 1467 13164 2 manual/DPM

Market-1501 [40] 2015 1501 32668 6 DPM

A systematic overview of the most recent work published in a top computer vision gathering
(such  as  CVPR17)  reveals  that  the  trends  in  person  re-ID  research  follow  (with  few
exceptions)  the  two  main  directions  defined  at  the  beginning  of  this  paragraph,  namely
pushing  for  more  discriminative  data  representations  and  investigating  novel,  more
informative  distance  metrics.  In  the  first  category, all  the  works  are  dominated  by  deep
learning approaches. For instance  [41] emphasizes the need of capturing small scale visual
cues  for  increased  discriminative  power.  To this  goal,  they  propose  to  use  Multi-Scale
Context-Aware  Networks  (MSCAN),  which  contain  multi-scale  convolutional  layers,  to
encode  image  context  information.  Secondly,  Spatial  Transformer  Nets  equipped  with
problem-specific spatial constraints are used to localize pedestrian parts. The two resulting
representations are fused and jointly optimized in an end-to-end approach. Along the same
line, SpindleNet [42] uses a region proposal network to drive feature extraction of seven body
sub-regions  (in  order  to  ensure  correspondence  between  feature  locations  of  different
images). Slightly differently, [43] takes one step back looking at the whole camera network
and aims at optimizing performance at this level, instead of focusing on pairs of cameras. To
this goal,  the authors propose a consistent-aware deep learning (CADL) approach, whose
objective is finding a global optimum matching for the entire camera network. 

Moving  towards  distance  metric  learning,  we  identify  transition  works  that  attempt  to
combine discriminative representations with some non-standard metrics. The work from [44]
aims at improving data representation by introducing a margin-based online hard negative
mining quadruplet loss designed to reduce the intra-class feature variation while enlarging the
inter-class one. Similarly, [45] combines the discrimination power of deep models with the
versatility of a novel metric learning based on a point-to-set (P2S) similarity comparison.
Incorporating  a  pair-wise  term (for  overfitting  robustness),  a  triplet  term (for  controlling
distances between positive pairs and negative pairs) and a regularization term (for smoothing
parameters and numerical stability), the P2S metric proves consistently superior to the point-
to-point (P2P) counterpart. 

Focusing more on metric learning, [46] takes a closer look at the manifold onto which images
reside.  In  an  attempt  to  smooth  the  learned  metric  wrt.  the  local  geometry  of  the  data
manifold, the authors propose a general purpose manifold-preserving approach that handle
similarities between two instances in the context of other  pairs,  thus better  reflecting the
geometry structure of the manifold. Their algorithm, called Supervised Smoothed Manifold
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(SSM) shows superior performance on person re-ID, especially on large datasets (CUHK03,
Market-1501). Chen et  al.  [47] address cross-camera variations by using a hashing based
method that transforms the original feature representation into compact identity-preserving
binary  codes.  A more  systematic  approach  to  distance  metric  learning  is  presented  in
[48] where the problem of color variation among different cameras is tackled in a one-shot-
learning  approach,  which  divides  the  metric  learning  into  two  components:  a  texture
component  (applied  on  intensity  images)  and  a  color  component.  For  texture,  a  color-
invariant  deep  representation  (CNN-based)  is  being  learned.  Color,  however,  is  being
incorporated into the model using handcrafted color features for which a color metric is being
learned for  each camera pair  using a  ColorChecker  chart  along with a  one-shot  learning
formulation. To learn this metric, only one example per camera is being required, allowing
for easy scalability to large camera networks. Experimental results validate this approach in
the context of semi-supervised or unsupervised person re-ID. 

Tab. 2.4.2. Performance evaluation of most of CVPR17 person re-ID publications

Method
Rank-1 score

Obs.
VIPeR iLIDS CUHK01 CUHK03

PRID
450S

Market
1501

MSCAN [41] - - - 74.2 - 80.3 Feature learning

SpindleNet [42] 53.8 66.3 79.9 88.5 - 76.9 Feature learning

CADL [43] - - - - - 80.8 Feature learning

BL [44] 49.0 - 62.5 75.5 - 80.3 Feature + metric

P2S [45] - - 77.3 - - 70.7 Feature + metric

SSM [46] 53.7 - - 76.6 72.9 82.2 Metric learning

CSBT [47] 33.1 - 48.0 46.2 - 42.9 Hashing

One-Shot 
ML [48]

34.3 51.2 45.6 - 41.4 - Semi-supervised

RR [49] - - - 61.6 - 77.1 Ranking refinement

Finally, a slightly different approach is considered in  [49], where focus is channeled onto
refining an existing ranking result. Assuming one retrieves a list of k-nearest neighbors of a
given probe (query), ranked by a distance metric. The underlying idea here is that if the probe
itself is present among the k-nearest neighbors of the ranked samples (in the feature space),
thus being k-reciprocal neighbors, then those samples are more likely to be positive matches
with the probe.

Table 2.4.2 creates a unified summary of the performance of the above described approaches
(in terms of Rank-1 scores) and enables direct comparison between them.

 2.5. Person re-ID in ACANTO

Investigating  most  recent  work  in  person  re-ID  made  possible  for  us  to  gain  a  solid
perspective  over  the  topic  and  familiarize  with  best  practices,  common benchmarks  and
performance  measures.  However,  when  it  comes  to  deployment,  we  are  relying  on  the
previously developed approach that computes human bodyprints for re-identification. While
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actively  searching  for  a  promising  approach  suitable  for  ACANTO,  our  current
implementation  uses  a  standard  RGB sensor  to  extract  bodyprints  based  on the  detected
bounding boxes (BBs) from our pedestrian detector. 

We use the BBs generated by our pedestrian detector to calculate the approximate positions
of the head and feet, respectively. Note that, unlike in previous approach, where we were
performing head detection first by using  video motion detection (VMD) and segmentation,
followed by computing the feet positions using a foot correlator, we are now able to compute
these positions at frame level. Similarly to computing heat maps, for every BB we consider
the top and bottom most middle points as proxy for head and feet positions, respectively.

Once the head and feet locations are determined, we take all the pixels contained on the line
that  connects  these  two  locations  and  accumulate  these  pixels  over  a  time  interval.  We
therefore form a temporal bodyprint of the person, which is further adjusted so that the waist
line is horizontal along the time axis. We correct the waist line by first fitting a polynomial
curve to the bodyprint and then applying the inverse transformation. Few examples showing
this process can be seen in Fig. 2.5.2.

The corrected bodyprints serve as a basis for extracting visual features (color cues, saturation,
contrast),  which  are  then  used  to  match  a  query  print  to  a  gallery  of  existing  potential
matches. We use simple euclidean distance to match feature vectors coming from bodyprints.

 
Fig. 2.5.2. Fitting a polynomial curve to the waist line allows us to correct the original

bodyprint (left). Result on the right.

19



ACANTO______________________________________________________________

 3. Detecting anomalies in videos

As surveillance becomes ubiquitous, the amount of data to be processed grows exponentially
alongside  with  the  demand  for  human  intervention  to  interpret  the  data.  A key  goal  of
intelligent surveillance is to detect behaviors that can be considered anomalous. As a result,
an extensive body of research in automated surveillance has been developed, often with the
goal of automatic detection of anomalies. We clearly see some added value of such system in
ACANTO, especially in managing security and safety. Regarding the benefits for the motion
planner, we argue that to some extent, an anomaly is a concept that can be defined by the
user. In other words, we can ask an anomaly detection system to detect whatever we tell it an
abnormal  situation  looks  like,  as  long as  we have  the  means  (i.e.  the  measurements)  to
dissociate the two situations. In this  line of thoughts, we can describe crowded places as
abnormal events, by looking at them as deviations from a situation of motion calm, which is
what one would expect to normally see. In what follows, we describe a general recipe to
automatically detect abnormal situation in videos, by combining appearance and motion cues
in a deep learning framework.

Most of current approaches for automatic analysis of complex video scenes typically rely on
hand-crafted  appearance  and  motion  features,  which  is  clearly  suboptimal,  as  it  is  more
desirable  to  learn  descriptors  specific  to  the scenes  of  interest.  To address  this  need,  we
developed a deep learning framework that  automatically  learns feature representations  by
combining appearance and motion from videos. We call this approach AMDN. In order to
exploit the complementary information of both appearance and motion patterns, we introduce
a novel double fusion framework, combining the benefits of traditional early fusion and late
fusion  strategies.  Specifically,  stacked  denoising  autoencoders  (SDAEs)  are  used  to
separately  learn  both  appearance  and  motion  features  as  well  as  a  joint  representation
(counting  as  early  fusion).  Then,  based  on the  learned features,  multiple  one-class  SVM
models are used to predict the anomaly scores of each input. Finally, a late fusion strategy is
employed to combine the computed scores and detect abnormal events. An overview of the
whole system is painted in Fig. 3.1.

Fig. 3.1. Overview of the AMDN system: we use both appearance and motion information
from videos to first train a set of stacked denoising autoencoders (SDAEs) in order to get a
compact representation for every modality as well as for the fusion of the two. Consequently,
we train one-class SVM models and perform late decision fusion for predicting anomalous
behavior in videos.
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Stacked Denoising Autoencoders
In  the  first  stage  of  the  system we  use  denoising  autoencoders  (DAEs)  for  extracting  a
compact and meaningful representation from the video input. Introduced in  [50], the idea
behind a DAE is to force the hidden layer to discover more robust features and prevent it
from simply learning the identity function. This is achieved by training the autoencoder to
reconstruct the input from a corrupted version of it. The structure of a DAE can be broken
down into two parts: the encoder and the decoder, connected by a single compressed hidden
layer. We use this hidden layer as feature representation of much larger data coming from
video  volumes.  Training  DAEs  involves  minimizing  the  average  error  between  the
reconstructed (corrupted) training samples and the original (uncorrupted) ones. Optimization
is typically done by means of Stochastic Gradient Descent. 

In order to extract mid-level appearance representations from the original image pixels, we
apply a  multi-scale sliding-window approach with a stride  d. The resulting  dense image
patches are then warped into an equal size of  , where ,  are the width and
height of each patch and   is the number of the channels (  for gray images). The
warped patches are used for training. All the patches are linearly normalized into the range [0,
1].  We stack 4 encoding layers with   neurons in  the first  layer, where

 is an amplification factor for constructing an over-complete set of filters. The use of
over-complete  representations  in  combination  with  sparsity  terms  has  been  shown to  be
effective in learning meaningful compressed representations in previous work [51], [52].

Moving to the motion features, we  compute dense optical flow and we use a sliding window
approach with windows of fixed size   (  for optical flow magnitude
along   and   axes) for motion representation learning. Similar to the appearance feature
pipeline, the patches are normalized into [0,1] for each channel and 4 encoding layers are
used. The number of neurons of the first layer is set to  , where .

Finally, to account for the correlations between motion and appearance, we perform a pixel-
level early fusion of the gray image patches and the corresponding optical flow patches. As
mentioned  earlier,  each  autoencoder  is  trained  separately  using  SGD  by  minimizing  the
reconstruction loss regularized by a sparsity-inducing term.

SVM for abnormal event detection
We formulate  our  anomaly  detection  problem as  a  patch-based binary  classification,  i.e.,
given  a  test  frame,  we  adopt  a  sliding  window  approach  and  classify  each  patch  as
corresponding to a normal or an abnormal event. Specifically, given the   test patch, we
compute the associated deep features representations  . Then, we rely on
three one-class SVM models to calculate a set of anomaly scores . Finally, the scores
are linearly combined to obtain the global anomaly score:

(3.1)

We use SVMs with RBF kernel to compute the predictions of the three modalities.  Are
the  prediction  scores  at  the  output  of  the  SVMs.  Once  computed,  the  predictions
corresponding to the three modalities (for a given test patch) need to be combined in order to
get  the  final  anomaly  score.  Formally,  we  need  to  set  the  values  of  the  vector

 used in Eq. 1. There are many approaches in finding candidate fusion
weights. Here we propose to solve the following optimization problem:
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(3.2)

where . Similarly to PCA, the matrix  maps the
samples  associated to the  modality into a new subspace in order to maximize
the  variance  of  the  first  m components,  subject  to  orthogonality  constraints.  The  matrix

 represents the covariance of the   feature type in the new subspace and
measures the spread of the projected samples for each modality. Setting the weights   by
solving the optimization problem (2), we favor feature types associated with data sets with
smaller variance: our intuition is that scattered data sets correspond to noisy features which
must be deemphasized.

In  the  proposed  optimization  problem  (2)  we  also  introduce  an  -norm  term,  which,
compared with traditional -norm and -norm terms, guarantees an enhanced flexibility, by
allowing to tune for p [53], [54]. Intuitively, -norm imposes sparsity on the learned weights,
while   norms  produces  an  “averaging”  effect.  Setting  a  priori  one  of  the  two may  be
suboptimal in term of performance. Moreover, the complexity of solving the problem (2) with

-norm is the same as for -norm [55]. Therefore, in our experiments, we tune the parameter
p in the interval   with a step of  . We also set the parameter  , as it
empirically  provides  the  best  performance.  Equation  (2)  describes  a  convex optimization
problem, whose solution can be found using an alternating minimization algorithm.

Datasets
The UCSD pedestrian dataset [56] includes two subsets: Ped1 and Ped2. The video sequences
capture different crowded scenes and anomalies including the presence of bicycles, vehicles,
skateboarders and wheelchairs. In some frames the anomalies occur at multiple locations.
Ped1 has 34 training and 16 test  image sequences with about  3400 anomalous and 5500
normal frames, and the image resolution is 238 × 158 pixels. Ped2 has 16 training and 12 test
image sequences with about 1652 anomalous and 346 normal frames. The image resolution is
360 × 240 pixels. 

The Subway dataset  [57] was  collected  using  CCTV cameras  and consists  of  two video
streams corresponding to two different subway station scenarios (an entrance and an exit
gate). The length of the videos is 96 min and 43 min, respectively. In the entrance subset,
there are 66 abnormal events include ing people moving in a wrong direction, unusual gesture
interactions between people and sudden stopping or running. In the exit subset 19 abnormal
events are included, such as people moving in a wrong direction and loitering near the exit
gate. The image resolution is 512 × 384 pixels. 

Experimental results
To improve the computational speed of our framework in the test phase, we use a foreground
detection  approach  based  on  background  subtraction.  This  is  motivated  by  the  fact  that
abnormal  events  are  typically  found in  correspondence  with  moving  pixels.  An example
depicting this process can be seen in Fig. 3.2. For an input test image, the probability map of
the foreground pixels is estimated with a background subtraction algorithm and binarized.
The foreground regions are detected by identifying the patches which contain more than a
certain number of foreground pixels (10% in our experiments).
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Fig. 3.2. Example of foreground detection preprocessing: original image (a) is subject to
background subtraction (b) followed by a binarization step (c). We focus only on patches that

contain at least a certain number of foreground pixels (10% in our experiments) - (d)

We first evaluate our approach on UCSD. UCSD is the dataset closest to our scenarios in
ACANTO,  since  it  contains  recordings  of  crowded  scenes,  much  like  in  shopping
centers/museums. We use a sliding window at different scales ( ,  and 
pixels)  to generate  training patches,  which are then resized at   pixels.
From the motion space we explore the scene using only patches of  
pixels.  Concerning  the  SDAEs,  we  set  the  architecture  of  the  encoders  to

 neurons  for  appearance  and  motion  modalities  and
 for the joint modality. Decoders have the architecture mirrored

w.r.t. the encoders. We use samples corrupted with Gaussian noise to train the SDAEs, while
the SVMs are trained using LibSVM.

To perform a quantitative evaluation, we use both a frame-level ground truth and a pixel-level
ground  truth  on  UCSD.  The  frame-level  ground  truth  indicates  whether  one  or  more
anomalies occur in a test frame. The pixel-level ground truth is used to assess the anomaly
localization performance. If the detected anomaly region overlaps more than 40% with the
annotated region, it is considered a true detection. We carry out a frame-level evaluation on
both Ped1 and Ped2. Ped1 also provides 10 test image sequences with pixel-level ground
truth. The pixel-level evaluation is performed on these sequences.

The proposed approach is compared with several state of the art methods. Specifically, we
consider the Mixture of Probabilistic Principal Component Analyzers (MPPCA) approach in
[58], the social force model in [59] and its extension in [56], the sparse reconstruction method
in  [60],  mixture  of  dynamic  texture  (MDT)  [56],  Local  Statistical  Aggregates  [61] and
detection at 150 FPS [62]. Numerical results depicting AUC are shown in Tab. 3.1, while the
associated ROC curves are plotted in Fig. 3.3.
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a)      b)

Fig.  3.3.  Receiver  Operating  Curves  obtained  on  UCSD  dataset  –  comparison  between
various approaches at frame level (a) and pixel level (b)

While on par with recent methods concerning frame-level anomaly detection in videos, we
score better  at  localizing the anomalies  (pixel-level),  which is  an important  advantage in
ACANTO, since we would like to understand not only if there's an anomaly in a certain video
volume,  but  also understand where  it  is  spatially  localized.  Figure  3.4 shows qualitative
results on the same UCSD dataset.

Fig. 3.4. Examples of anomaly detection results on Ped1 (top) and Ped2 (bottom) sequences.
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On Subway dataset, we use the same preprocessing approach as for UCSD, except that now
all the video frames are resized down to  pixels for computational efficiency and
we no longer apply a multi-scale patch sampling, but rather keep the patch dimension fixed
(to   pixels) for both appearance and motion cues. We follow the dataset evaluation
protocol  as  in  [41],[45] and  compare  with  the  following  methods:  Spatio-Temporal
Composition  (STC)  [63],  MPPCA  [58],  Spatio-Temporal  Oriented  Energy  (STOE)  [64],
Dynamic Sparse Coding (DSC)  [65], Sparse Reconstruction  [60] and Local Optical Flow
[57]. We report the number of abnormal events detected, as well as the number of false alarm
cases in Tab. 3.2.

Figure  3.5  shows  qualitative  examples  of  using  AMDN  on  Subway  dataset.  Detected
abnormal events include: exiting through the entrance gate, entering through the exit gate and
entering through the entrance gate without paying. 

Fig.  3.5.  Examples  of  anomaly  detection  results  on  the  Subway  exit  (top)  and  entrance
(bottom) datasets. The regions with abnormal events are marked with red color. (a) and (e)
show examples of normal frames of the exit and entrance scenarios. The detected anomalies
in the examples include: people entering through the exit  gate shown in (b),  (c)  and (d);
people entering without payment shown in (f) and (g); people exiting through the entrance
gate shown in (h).

25



ACANTO______________________________________________________________

 4. Detecting  face-to-face  interactions  from  the  platform
point-of-view

So far, in  ACANTO we have developed approaches  to  model  social  interactions  from a
surveillance system's point of view (D3.5). We are able to detect when groups of people are
engaged in social interactions by assuming an F1-formation, using a multi-modal head and
body pose estimation framework. However, face-to-face interactions are more difficult  to
spot and model from a surveillance perspective. In order to address this task, we propose to
shift  the  viewpoint  from surveillance  to  on-board  and install  an  additional  RGB camera
mounted on the same vertical pole as the one analyzing the user of the walker and facing
ahead. Under this setup, one is able to track and analyze human faces “targeting” our walker
subject, potentially engaged in a verbal communication. Inspired by previous research work
[66],  [67],  the  ingredients  used  for  modeling  social  interactions  in  this  scenario  are  the
attention gaze (expressed in terms of head orientation) and the speech pattern. Since head
orientation has  been previously developed for  modeling the user state,  we focus here on
developing a method for recognizing speech activity from a visual perspective. 

 4.1. Speech activity detection in face videos

The proposed solution models speech activity detection as a binary classification problem by
analyzing consecutive frames inside a predefined temporal window. Given a video sequence
containing speech activity (e.g. a potential face-to-face interaction) we assume there is a face
model tracking the user from which mouth crops are extracted and concatenated. In this study
we used the facial landmark detection system from [68] for simplicity and speed. Once the
key-features  belonging  to  the  mouth  region  are  localized  within  the  model,  the  cropped
images are scaled to the same size and prepared for feature extraction. We use generalized
Haar-like features (i.e. differences of regions of pixels) exploiting the gray-scale information
and  sample  each temporal  window with  200 random regions.  For  each  such rectangular
region (spatially enclosed inside a mouth crop), we compute differences between all the crops
inside the window and a reference one (the first). In this way we are able to model changes in
appearance by looking at how differences evolve over time. From each distance signal (of the
predefined 200) we compute statistical coefficients like mean, standard deviation and mean
over the first order derivative, hence forming the final feature vector. The processing pipeline
is outlined in Fig. 4.1.1. 

Fig. 4.1.1. Processing pipeline for speech activity detection: (a) - initial video frames, (b) -
extracted  mouth  crops  with  superimposed  rectangular  regions,  (c)  -  computed  distances
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between consecutive frames and the first one. Statistical coefficients (e.g. mean, std, mean of
first order derivative) are determined from each distance vector.

Speech Dataset
The training set was generated from the Map Task Corpus, an extension branch of the Self-
Presentations Corpus [69], containing video recordings of 89 users engaged in spontaneous
dialogues and interactions, elicited by finding the solution to a specific task. The videos were
captured with a standard webcam at a resolution of  pixels and a frame rate of 15
fps. Each user recorded 4 video sequences each 5 minutes long in a frontal view setting. Few
examples  can  be  found  in  Fig.  4.1.2.  We first  process  each  video  in  a  facial  landmark
detection stage in order to obtain the mouth crops on a frame-by-frame basis. Valid frames
are then explored using a temporal window and grouped together to form individual samples.
We set the window size experimentally to 15 frames, corresponding to 1 second of speech
activity. Our training set added up over 130.000 labeled samples.

Fig. 4.1.2. Example frames from the Map Task Corpus [69]

Experimental results
We Random  Forest  classifier  was  trained  following  a  10-fold  cross  validation  scheme,
repeated 50 times. Each trial left aside one 10th of the whole data, randomly generated, while
the rest was used for testing. The random partitions were generated in compact structures, i.e.
continuous pieces of data, since uniform sampling transfers distribution properties between
training and testing sets. For training the Random Forest, the following settings were used:
the number of trees was set to 20, maximum depth fixed at 10, each tree from the forest was
grown using 80% of the training-set as in-bag data, while the choice of the best binary test
out of all 50 randomly generated for each split was made based on information gain. The
mean and standard deviation of the accuracy obtained using these parameters is 83.2% ±
3.8%, which agrees with the findings of [70][71].

We compared the forest to another machine learning algorithm that relies on randomization to
achieve  good performance.  Random Ferns  were  initially  introduced by Ozuysal  et  al. in
[72] as a competitive alternative to the Random Forests. Ferns are non-hierarchical structures,
implementing the same binary test approach as the forests, but without any information gain
based optimization. Instead, each fern applies all the tests at once and constructs a probability
distribution for each possible output, for each class. The underlying assumption here is a
semi-Naive  Bayesian  rule,  according  to  which  groups  of  features  are  considered  to  be
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independent,  thus  allowing  to  simply  multiply  probabilities  between  ferns  in  the  final
decision computation. Even if the assumption is not always valid, it has been proven [73] to
work remarkably well in practice. As a consequence of building a probability matrix for each
fern, the memory requirements grow linearly with the number of ferns and exponentially with
the depth of the ferns, for a given number of classes. This is a serious limitation when forced
to  increase  depth  for  increased  discrimination  power,  but  in  practice  there  are  ways  to
control/reduce  the  amount  of  working  memory  (e.g. working  with  single  precision
structures).

    

Fig.  4.1.3.  ROC  plots  comparing  Random  Forests  to  Random  Ferns  at  visual  speech
recognition  (left).  Examples  of  correctly  classified  non-speaking  (middle)  and  speaking
(right) sessions along with probability estimates. Note the mouth area crop stack at the left of
each snapshot, corresponding to a temporal window of 1 second.

Although similar size Random Ferns were proven to yield similar performance values as the
Random Forests on keypoint detection tasks [73], we discovered the ferns to be inferior for
our speech activity detection. In fact, increasing the number of ferns to 200 and the depth to
12 still did not achieve the same detection rate as the Random Forest based approach. Figure
4.1.3. plots the ROC curve for this comparison, along with two examples of negative and
positive speech activity, correctly classified.

 4.2. Building a model for face-to-face interactions

In order to build a face-to-face interaction model, we take inspiration from recent work in
human social interaction modeling  [66], [67] and combine our measurements for focus of
attention with those of speech activity. To this goal, we define a head pose activation flag,
that sets itself to 1 every time a potential face is detected to “target” the user of the walker. In
terms of head pose, this is evaluated as a logical check that the  yaw and  tilt are within a
narrow range of angle values (we empirically set the thresholds of the angles to   in all
directions).  A similar  threshold-based  mechanism  is  used  to  define  a  speech  flag,  that
switches  to  1  every  time  speaking  activity  is  detected  by  the  RF  classifier.  For  a  full
likelihood of a potential social interaction, we require that both speech and head pose flags
are active at the same time. We apply temporal smoothing (in the order of a second) on all
flags to avoid flickering behavior, which is a good trick in practice. This means that, even if
the head pose is at the border of the  for some time (i.e. not entirely stable) , the head pose
activation flag will experience at least a one second inertia window.

Figure  4.2.1.  shows  qualitative  results  of  the  system  on  Disney  dataset  [74],  a  highly
challenging publicly available data collection showing social interactions captured under a
first-person setting.  The  dataset  contains  recordings  of  8  subjects  wearing  head-mounted
cameras at a theme park, summing up to more than 42 hours of real world video. We focus on
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a very narrow subset of this corpus, namely the dialog windows, since we aim at capturing
face-to-face interactions. Figure 4.2.1 captures an entire temporal window approximately 15
seconds long and depicts the contribution of the head pose (in the first part of the window)
and  later  on  the  speech  component  to  the  overall  likelihood  of  the  face-to-face  social
interaction.

Fig. 4.2.1. Example frames capturing a temporal window from Disney dataset [74], showing
the outcome of the face-to-face interaction detection component.

Note the speech output probability as well as the face-to-face likelihood (F2F) written on
every frame. We color code the frames for which the probability of a face-to-face interaction
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exceeds 0.5. For a better understanding of how the system behaves, we invite the reader to
access the full video2 from which Fig. 4.2.1 was generated.

As with the other face analysis components (e.g. pain detection, emotional valence/arousal
classification), we implemented the speech activity detector in C++, as a standalone service
connecting directly to the webcam facing ahead of the walker (see Fig. 4.2.2 – the right-most
stream), processing the frames grabbed from the video and sending the result (in the form of
a probability measure encoding the likelihood of an undergoing face-to-face interaction) as a
message  on a  dedicated  channel  using  ZeroMQ. As in  Fig.  4.2.2,  we assume an outside
existing client and a set of outside subscribers (above and below the gray dotted lines). The
client will pass request (req) commands to the Launcher (implemented as a server), which
will respond with reply (rep) messages to the client. The launcher himself controls a set of
components (the black arrows), such as the camera frame publisher or the various frame
processors (Sub 1, Sub 2, ...). The control commands are limited to start/stop signals and
some parameters (such as internal communication ports). The subscribers Sub 1, Sub 2, …
take the form of face analysis components (e.g. pain detection) and are all connected to the
camera streaming publisher (the camera facing the user of the walker). The f2f module on the
other hand is connected directly to the second camera (Cam2) facing ahead of the walker and
implements the face-to-face component.

Fig.  4.2.2.  Overall  picture  of  the  face  analysis  module  in  the  context  of  external
clients/subscribers. Blue keywords are message keys used to communicate between blocks.

2 https://youtu.be/-u1EVBb3x48
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 5. Conclusions

In this deliverable we have addressed some of the main aspects in social context modeling,
from both platform's point of view, as well as from the perspective of surveillance cameras.
We have posed and answered three questions meant to strengthen security in surveillance
settings, as well as provide important cues relating human social interactions. 

In the platform world view, we have developed and implemented a solution that models face-
to-face  interactions,  using  close-range  facial  cues.  The  resulting  probabilistic  F2F  model
combines head pose information with speech activity provided by a dedicated component that
processes visual crops of the mouth area inside a temporal window. 

Security concerns have been addressed in a surveillance setting by developing approaches for
person detection and tracking in complex, real world scenarios, as well as identifying trends
and good practices for people re-identification. By leveraging pedestrian data coming from
different modalities (color and thermal),  our CMT-CNN model has shown state-of-the-art
results in pedestrian detection using a cross-modal deep representation. In a similar fashion,
by  combining  appearance  and  motion  information  from  surveillance  footage,  we  have
developed a deep learning based approach to  detecting abnormal behavior  in  videos.  We
show its effectiveness in several public benchmarks.

Overall, both D3.5 and D3.6 bring important contributions to describing the social context in
ACANTO. Solutions  to model  various  social  aspects,  ranging from anomaly detection to
spotting different types of social interaction (F-formations, face-to-face interactions), have
been presented. All the information provided by the developed components is meant to form
the building blocks for a high level of social awareness, which in turn should provide context
for the planning unit (WP5). In particular, we expect the reactive planner to benefit most from
modeling the social context, as it is now possible to take into account the “social” nature of
human motion and coordination, much needed to refine the SMC (statistical model checking)
engine (WP5). 

Finally, since some of the components described in this document are based on state-of-the-
art deep learning modeling (which needs support from dedicated hardware units), we expect
this deliverable to be of significant relevance to WP7, in charge of managing cloud resources.
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