

Health, demographic change and wellbeing
Personalising health and care: Advancing active and healthy ageing

H2020-PHC-19-2014

Research and Innovation Action

Deliverable 2.6

Activity plans representation

Deliverable due date: 05.2017 Actual submission date: 31.05.2017

Start date of project: February 1, 2015 Duration: 42 months

Lead beneficiary for this deliverable: UNITN Revision: 1.0

Authors: Paolo Bevilacqua, Daniele Fontanelli, Marco Frego, Thomas Given-Wilson, Sean
Sedwards

Internal reviewer: Luigi Palopoli

The research leading to these results has received funding from the European Union's H2020 Research
and Innovation Programme - Societal Challenge 1 (DG CONNECT/H) under grant agreement n°643644

Dissemination Level

R Restricted

CO Confidential, only for members of the consortium (including the Commission Services) X

The contents of this deliverable reflect only the authors’ views and the European Union is not liable for any use that

may be made of the information contained therein.

Ref. Ares(2017)2763233 - 01/06/2017

ACANTO

2

3

Contents

1 EXECUTIVE SUMMARY.. 5

2 INTRODUCTION.. 6

3 STATE OF THE ART .. 6

4 CASE STUDIES .. 11

5 THE CHOICE OF ACANTO ... 12

5.1 PLANNING DOMAIN .. 13
5.2 EXTENSION TO GROUPS ... 17
5.3 AN EXAMPLE ... 18

6 SEMANTIC REPRESENTATION OF PLANS .. 20

7 MONITORING THE EXECUTION ... 20

8 CONCLUSION ... 22

10 BIBLIOGRAPHY ... 23

ACANTO

4

5

1 Executive Summary

This deliverable concerns the representation of activity plans, which must be adequately expressive
to accommodate probabilistic information and verification, while being efficient to implement. In this
work we thus analyse and describe the syntactic and semantic representation of activity plans. We
first survey various motion planning languages, to identify the most suitable in our context. We then
present case studies relevant to ACANTO and use these to motivate our choice of planning language.
We then explain how the semantics of activity planning will be implemented and how it links to the
syntactic representation. We conclude by extending our planning model to introduce the support for
group activities.

In summary, we have identified the Planning Domain Definition Language (PDDL) language as a
suitable means to represent activity plans at a syntactic level. We show that this language is
adequately expressive to represent probabilistic information and other annotations necessary for
the activity planning required by the ACANTO case studies. We describe how we intend to abstract
the environment as a graph where the nodes represent the set of possible Points of Interest to visit.
In this way, the motion actions associated to an activity plan correspond to edges connecting pairs of
Points of Interest, to which we can give various weights, corresponding to different metrics related
to the properties and constraints of an activity. The planning of activity thus corresponds to finding a
path in the abstract graph visiting a subset of the points of interests, while fulfilling all the hard (and
possibly also the soft) constraints. The metrics will also be used to monitor the progress of the user
with respect to an activity and anticipate when the activity needs to be re-planned or terminated.

This document reports the final outcome of our efforts, which started in P1 with the production of a
preliminary report (D2.5). The most important novel contributions contained in the present
document are: 1. We make our final choice on the language used, whereas in the previous version we
just studied a range of possible options, 2. We have completely defined a general domain for activity
definition using the PDDL language (in the first version, we had just shown a small-scale example), 3.
We have extended and generalised the model to encompass the case of groups of users, 4. We have
updated the two last sections to reflect the changes made in the Activity Monitor and in the Activity
Planner.

ACANTO

6

2 Introduction
The main objective of Task 2.3 is to provide an effective means to represent the activity planned for
the user. The language to synthesize and represent the activities has to be flexible enough to
comprise the following features: a) probabilistic planning and different levels of rewards according
to the user experience and planned exercise; b) synthesis by means of control actions (which is
another outcome of Task 2.3 and discussed in this deliverable); c) monitoring capability of the
planned activity; d) possibility to measure the maximum deviation degree from the planned activity.

Figure 1 illustrates the basic elements and interactions of our proposed motion planning
architecture. The Activity Planner constructs an Activity Plan from a palette of alternatives,
according to the requirements it is provided (e.g., amount of exercise, undesirable areas). The
Reactive Planner monitors the user’s physical location with respect to the plan, other moving and
static objects in the environment, and the constraints it is provided (e.g., desirable proximity to
others). As a result, it suggests a notionally optimal direction of movement to the user. The user may
not necessarily follow the suggestions, but at all times the Sensors calculate the user’s actual position
with respect to surrounding objects. If the user strays too far from the plan for a long time, the
Motion Execution Monitor component of the Reactive Planner informs the Activity Execution Engine,
that may require a re-planning of the whole Activity. The Activity Execution Monitor monitors the
user’s progress with respect to the high level goals of the activity (e.g., maximum elapsed time). Like
the Reactive Planner, if at any time the Activity Execution Monitor judges that the goals of the
Activity Plan have not or will not be achieved, it will request a re-plan from the Activity Planner.

Figure 1

In what follows, we first present an overview of the possibilities available for planning in similar contexts

and draw our conclusions presenting the ACANTO choice using specific case studies. We then relate the

syntactic choice to the underlying semantics of motion planning and describe how activities will be

executed and monitored. Finally, we summarise our approach and highlight areas of ongoing research.

3 State of the art

In the realm of planning, the problem of finding a suitable sequence of control actions that leads an
electromechanical platform from an initial configuration to a desired configuration is usually
referred to as motion planning, which involves systems with continuous dynamics given as ordinary
differential/difference equations. To highlight this characteristics, motion planners are usually called
continuous state space motion planners [3], less often control problem in Control Theory [4]. The
distinctive feature of these approaches is that they are usually quite easy to be expressed, but very
difficult to solve. This peculiarity gave birth to a plethora of solutions that treats the motion planning
problem in combination with constrained motion areas, e.g., navigation functions for sphere
workspace and obstacles [5], potential field-based control algorithm for workspace with geometric

7

partitions [6], sampling-based motion planning techniques like probabilistic roadmap method [7],
and rapidly-exploring random trees [8, 9].

A radically different approach has been historically followed by the Artificial Intelligence community
[10], in which the planning problem is seen as a sequence of possible control actions that act on the
system and change its configuration. In such a case, the planner does not deal with a motion planning
problem but, more appropriately, with a task planning problem. The greatest distinction between
motion and task planning is that the state space in motion planning is continuous and possibly
unbounded, making it impossible to enumerate all the states explicitly as in task planning. Usually,
these problems are manageable whenever a finite, well established set of control actions is available.
This makes another remarkable different with motion planners where the set of allowed actions is
infinite given the continuous input space. Each control action is described by:

The precondition that has to be fulfilled before the action can be performed;

The effect on the system state after performing the action.

Again, since for motion planners the dynamical system may evolve differently under the same
actuation signal from different initial states, the notion of the action conditions and effects are not
well defined. For task planners, instead, the system is modelled as a discrete state transition system
[11] and different states representation are available, which results in different complexities when
solving the planning problem. Logic-based representation is currently one of the most popular
formalisms used by many planning tools, like STRIPS [12] and PDDL [13]. An interesting feature of
these approaches is that the solving process is similar to human deliberation that chooses and
organizes actions by anticipating their outcomes.

STRIPS representations are based on the definition of initial and goal states, and on actions having pre-

conditions and post-conditions (effects), defined using propositional logic formulae. Over the years, new

formalisms and tools have been defined to model problems of increasing complexity, with the aim of

solving problems closer to real world scenarios, and with practical applications. A first improvement is the

Action Description Language (ADL) [47], introducing the possibility to define first-order logic predicates,

and actions having conditional effects, happening only when individual preconditions for each effect hold.

[48]. Further tools have been proposed to handle temporal actions and tasks, and to model numeric

properties evolving over time. For example, the extension of PDDL 2.1 [13] introduces numeric fluents

and durative actions to model these elements. Another solution working with temporal domains is IxTeT

[49], defining a language similar to PDDL2.1, but more powerful, as it gives the possibility to access

specific time points within the execution of durative actions.

Other languages have been developed to support planning problems with specific domains. For example,

the NASA has developed the NDDL [50] and then the ANML (Action Notation Modeling Language) [51]

as languages for planning missions and activities. Both these languages allow the expression of temporal

relations and constraints. In particular, the ANML, similarly to the PDDL, is based on the concepts of

actions and states, but supports valued variables and rich temporal constraints. In addition, it provides a

simple way to model resources and their usage (e.g. fuel, energy).

The introduction of additional formalisms has increased the expressiveness of planning languages, giving

the possibility to model soft and hard constraints on the trajectory of the plan, to model partial

observability, the presence of different initial states, and of actions having different, non-deterministic

effects [52, 53]. Finally, solutions have been proposed to model probabilistic problems like for example

Markov Decision Processes, where the effects of actions have probabilistic distributions, and state

transitions may produce different rewards. Usually, the aim of this kind of problems is to maximize the

expected reward, as for example in the probabilistic extension of the PDDL [54]. Another language

developed quite recently as an extension of both the PDDL and the Probabilistic-PDDL is the RDDL

(Relational Dynamic Influence Diagram Language) [55]. It allows the modelling of nonlinear difference

equations and unrestricted concurrency. Moreover, it supports partial observability and exogenous effects

having some known probability distributions.

The most interesting feature of task planners is their ability to enumerate all the motion possibilities
by means of control actions. This fact opens to the application of model checking techniques for the
synthesis of the planning path. Given a finite transition system modelling the actual hardware or
software system or its abstraction, a model checker exhaustively and automatically verifies if the
given model satisfies a given specification, which normally involves security requirements such as
absence of bad states and deadlocks [14, 15, 16]. The automaton-based model-checking algorithm

ACANTO

8

returns either success indicating that all possible system behaviours satisfy the property, or a
counterexample as one possible behaviour that fails the property. The propositional and temporal
requirements on the system behaviour are specified using temporal logic language, such as model-
checking algorithms have been conceived for verification, they are becoming attractive also for
synthesis. In fact, the purpose of verification is to find any system behaviour that violates the
property, therefore for the synthesis we are interested in finding one of the system behaviours
satisfying the property, and more importantly that is optimised regarding certain cost functions.
There has been many recent work that integrates motion planning algorithms with model-checking
techniques to treat complex motion tasks specified by temporal logics [17, 18, 19]. In such a case,
temporal logics such as Linear Temporal Logic (LTL) and Computation Tree Logic (CTL) have been
found very efficient in providing a formal and high-level way of describing motion objectives that are
much more complex than the classical point-to-point navigation problems, e.g., coverage of several
regions, sequential visits, response or surveillance. The possibility of applying model checking
techniques to path synthesis have been investigated in [20] during the DALi project [2].

The model-checking-based controller synthesis has been applied to both complex dynamical systems
and autonomous robots: [21] considers the control strategy synthesis for discrete-time linear
systems where the control objective is given by linear temporal logic formulas, beyond the usual
stabilization and output regulation objectives; [22] proposes an optimal control strategy for discrete-
time systems under the temporal logic constraints and a quadratic cost function; [23] and [24]
present a computational framework for the a feedback control strategy synthesis of discrete-time
piecewise affine systems, where the specification is given as linear temporal logic formulas over
linear predicates; [25] provides a robustness index for the satisfiability of continuous-time signals
under temporal logic specifications; [26] synthesizes a generic cyber-physical system with respect to
a metric temporal property. Fainekos et al. [27] firstly proposes the complete framework of
automated controller synthesis for autonomous robots under temporal logic tasks. The robot’s
motion is abstracted by its dynamical transitions within a partition of the workspace, as a finite
transition system. Then a high-level discrete plan as a sequence of regions to visit is synthesized by
the modified model-checking algorithms, which is then implemented by low-level continuous
controller executing the control actions.

One major drawback of the proposed approaches, that are computed off-line at the beginning of the
mission, is their inability of reacting in real-time to changes in the environment. Indeed, the basic
assumption is that the workspace is perfectly known and is correctly represented in the finite
transition system [28]. Some extensions consider the incomplete representation of the workspace
[29] by modelling the robot’s motion in the uncertain surrounding environment using a
nondeterministic Markov decision process, where the goal is to find a control strategy that
maximises the probability of satisfying the specification. Other approaches use a game-theoretic
approach to model the game between the robot and the environment and then synthesise a strategy
for the robot by exhaustively searching through all the possible combinations of the robot
movements and the admissible workspaces [30], [31]. Instead of aiming for an off-line motion plan
considering all the possibilities, [32] proposes to create a preliminary plan based on the initially
available knowledge about the robot and the workspace and then use real-time observations about
the workspace and the plan monitored execution to verified and, in case, revise the original plan.
Similar ideas appear in [33] by locally patching the invalid transitions.

The approach taken in ACANTO in this respect is different, since the goals of the Activity Planner and
Reactive Planner are significantly distinct and we do not attempt to use them both to achieve the
same goal. The Activity Planner is concerned with completing high level activities under various
constraints, such as distance from a bathroom, ideal calorific burn, achievement of major milestones,
minimum pace. The Reactive Planner is instead focused on reaching the next waypoint in the activity,
trying to avoid collisions and maintaining group cohesion. Hence, we delegate high level planning,
constraints and goals to the Activity Planner, and otherwise operate in a monitoring role with the
Reactive Planner, handling the finer details. For example, the Activity Planner may pick a path
through the mall and inform the Reactive Planner of the next waypoint. However, significant
deviation to avoid collision (or violating an Activity Planner constraint) can force re-planning. In the
other direction, the motion taken by the user is reported back to the Activity Monitor to account for
the actual costs/constraints rather than those projected in planner (e.g. a path may be projected to
cost 110 calories, but the user expends 120 calories).

9

In fact, the classic motion planning framework presented previously framework reports a failure
when the given task specification is not realisable [34]. To have a measure of the deviations from the
original plan, [35,46] suggests to address the problem in a systematic and find the feasible relaxed
specification automaton that is closest to the original one, while [36] introduces a way to determine
the cause of an infeasible task analysing the environment and the system jointly. [37, 38, 39] follow a
different approach by providing a way to synthesise a feasible path that “fulfills the most” the
infeasible task. These approaches align with the proposed approach above for ACANTO, in order to
impose further constraints to the Reactive Planner (Task 5.2) using the information of the Activity
Monitor (Task 5.3).

Another important research thread for planners is related to the intrinsic distributed nature of the
application. Indeed, there is an increasingly number of applications in which a set of cooperating
agents coexist in the same environment to reach a common goal. Two main paradigms can be
distinguished for planning algorithms. On one hand, there is a tightly-coupled and top-down
approach, where the overall plan is split into a set of sub-tasks and then each agent is assigned one of
the identified sub-tasks and then the agents execute them in a synchronized manner [40, 41]. On the
other hand, there is a loosely-coupled and bottom-up approach in which the cooperation is intended
as an emerging behaviour of the team. In practice, there is no global task and each agent acts
according to its own plan in order to accomplish the task, meanwhile it interacts with other agents
when necessary, in terms of information exchange and collaborations.

Our application in the ACANTO project fits into the second group, since each user must be able to
plan independently (especially if connection to the infrastructure is lost), and needs to know about
or consider the plans of all other users in the vicinity. This is further reinforced by recognising that
while groups may be able to share some common planning information (particularly at the activity
level), in general many agents will not share identical constraints, and goals; and that this
information should not necessarily be disseminated.

Interestingly, the model checking-based control synthesis framework has also been extended by
many research teams to a multi-agent system consisting of autonomous agents. Among the others,
[42] and [43] decompose a global task specification to bi-similar local ones in a top-down manner,
[44] deals with distributed optimal path synthesis under traveling time uncertainties given an
assigned global goal. Linear temporal tasks have been instead considered for a multi-UAV routing
problem by [9]. A totally decentralised approach is instead followed by [37] and [45], where a team
of cooperative agents with different, independently-assigned, even conflicting individual tasks is
considered.

Based on the analysis here presented, the following table reports a summary of the solutions that best fits

the the activity planner requirements of ACANTO.

ACANTO

10

FORMALISM FEATURES

STRIPS

Simple formalism.

Definition of initial and goal states.

Definition of propositional variables.

Definition of actions, having preconditions (must
hold) and postconditions (effects), involving the
propositional variables.

Action Description Language (ADL)

Action language like STRIPS.

Possibility to define first-order logic predicates.

Possibility to define conditional effects, happening
only when some preconditions hold.

IxTeT

Language based on actions (tasks), with multi-
valued domain attributes.

Possibility to define temporally qualified
conditions and effects (events), happening at
specific points during the execution of an action.

Possibility to express temporal constraints
regarding each task.

NDDL

Language to model hybrid systems.

Based on the definition of variables and
constraints.

Support for user defined classes.

Support for temporally qualified states and
actions.

Possibility to define temporal constraints and
relationships between different actions.

ANML

Based on the modelling of actions and states.

Support for multi-valued variables.

Support for rich temporal constraints.

Support for action conditions, effects and resource
usage.

Support for HTN (Hierarchical Task Networks)
decomposition.

Specific formalisms to model resources (like
battery charge) and their use

PDDL 1.0

Possibility to define problems making use of
different features, by indicating for each problem
the needed requirements.

Based on states and actions.

Support for ADL conditional effects.

Possibility to define a domain file used for
multiple problems.

PDDL 2.1

Extension of PDDL 1.0.

Support for numeric properties evolving over
time, having discrete or continuous changes

Support for temporal problems through durative
actions

Support for plan metrics, to define some
numerical quantities that must be
maximized/minimized

PDDL 3 Extension of PDDL 2.1 levels 1 and 2.

11

4 Case studies

To illustrate our choices more concretely in Section 5, in this section we briefly recall three use cases

relevant to ACANTO, as idendified by WP1.

First Use Case

Isabel is an 82 year old woman who has lived alone for the past two years. She lives in a flat by herself in

Newcastle. She no longer goes out very often and has become very physically inactive, even if her doctor

suggested to stop with this unhealthy behaviour. Her daughter brings her groceries once a week. While

Isabel used to enjoy going for walks, she no longer has anyone to go walking with. She recalls the times

she spent walking with fondness and wishes that she had someone to go walking with. One day, she

receives an invitation by mail to try out the new FriTab and FriWalk system. After receiving the system

when a researcher visits her, she tells the system about her background and interests. She tells the system

that she used to enjoy walking. Later that day, the FriTab suggests that she meet a lady in the next street,

Martha, who likes to visit the local shopping mall and has the same platform. The system has noticed that

Isabel does not have many friends and believes that if she had a friend who also enjoyed going for walks,

she might go there again. Isabel is hesitant at first but then agrees to meet up and try out the FriWalk. The

FriTab tells Isabel to meet Martha the following Wednesday at 10am to enjoy a morning together at the

shopping mall. Once she arrives to the shopping mall, the FriWalk shows the directions to get in touch with

Martha at the prescribed time. Since Martha has a similar FriWalk, the two ladies meet with any problem.

Isabel and Martha go for a walk in the mall and decide to buy some groceries on their own. The FriWalk

suggests the route and monitor the execution of the activity, in order to report to her medic the physical

activity that has been carried out. During the walk, the FriTab realises that Martha feels a little bit tired and

suggests to interrupt the planned activity. The FriTab suggests Isabel and Martha to have lunch in a local

cafe. The FriWalk devices guides them gently to the desired cafe where they have a pleasant lunch and

agree to meet up again in the following days.

Support for trajectory constraints that must be
respected by the generated plan

Support for preferences (soft constraints)

Soft constraints can have different priorities,
causing different penalties when violated

Probabilistic PDDL

Extension of PDDL 2.1.

Support for probabilistic effects (different
outcomes having different probabilities).

Introduction of a specific fluent, reward, to model
Markovian rewards, associated to each state
transition.

The plan must maximize the probability of
reaching the goal state, or the expected value of
the reward.

Multi Agent PDDL

Extension of PDDL 3.

Introduces the support for plans with multiple
agents.

Possibility to model interactions and
collaborations between the different agents.

RDDL

Extension of both PDDL and Probabilistic PDDL.
Support for nonlinear difference equations and
unrestricted concurrency.
States, actions and observations are parametrized
variables.
Evolution over time modelled by stochastic
functions to define the value at the next state of
each variable, depending on the current values of
state and action variables.

ACANTO

12

Second Use Case

Michael is a 72 year old man who lives alone in Felling, Gateshead. For the past few years, he has found

mobility very difficult and he is waiting for a hip operation. Consequently, he doesn’t get out much. He

used to enjoy visiting museums and now fulfils his passion for natural history by watching documentaries

on TV. He would like to be able to get out to visit the museums in Newcastle.

A researcher visits Michael one day and shows him the FriTab. Michael explains to the researcher that he

has mobility problems so wouldn’t be able to get out much. But the researcher explains the FriWalk to him

which is owned by several shops, galleries and museums in the area. He also explains that people on the

FriTab network may be able to help him get transported to locations and events. So Michael enters his

details into the system and tells it that he has mobility problems. The information on Michael’s profile are

also updated by his doctor, who also enters some contraints concerning the activities Michael can safely

carry out.

The next day, the FriTab shows Michael that a tour is being organised at the Hancock Museum. It invites

him to attend and tells him that another person attending would be willing to pick him up. The system

knows that Michael enjoys natural history and that he also has mobility problems. It knows that the

museum has several FriWalk devices that can help Michael. It also knows that one other attendee has a car

and is willing to transport friends. Michael is hesitant but agrees to give it a try. So he tells the system that

he will attend. The FriTab tells him that Jane will pick him up before the event in her car. Michael tells her

his address.

At the arranged time, Jane picks Michael up and they drive to the museum. When he arrives at the

museum, he is given a FriWalk which helps him to walk with the rest of the tour group. After the tour is

over, the FriWalk even suggests a guided tour of its own that Michael can do alone without violating the

medical prescriptions. However, Michael is tired but decides to come back and try the guided tour another

day. The FriTab forwards the activity log file to the network for user profile updates.

Third Use Case

Dorothy is a 69 year old woman who lives alone in Blaydon. Dorothy uses a walker to get around because

she finds that it gives her confidence after her fall one year ago. Moreover, it helps her in keeping a

constant physical activity for a correct rehabilitation, according to the medical prescriptions. Dorothy loves

shopping and likes it when her friend occasionally takes her shopping at the MetroCentre. While she likes

the MetroCentre, she is nervous about going there alone and worries that she would get lost. But she would

like to go there more often.

Dorothy is shown the FriTab and told that it clips onto FriWalk devices which are available at the

MetroCentre. She decides to try out the FriTab system. Several days later, the system suggests that

Dorothy visit the MetroCentre to enjoy some shopping. The system has noticed that Dorothy has stayed

indoors for several days and believes that she would benefit from getting out. Dorothy thinks that it would

be a good idea and asks the FriTab for more information. The FriTab suggests that she get the 2:15 bus

from the nearby bus stop which will take her to the MetroCentre. It tells her that it will give her directions

to the MetroCentre and will help her find her way around inside.

She gets the bus and travels to the MetroCentre. When she gets there she swaps her walker for a FriWalk

and clips in her FriTab. The FriTab shows her that several shops have sales and gives her directions.

Furthermore, it also advices her of the presence of her friends Rita and Marion, both equipped with a

FriWalk. Dorothy meet them in front of the Central Café and then take a walk in some shops. The FriTab

suggest them to go to the theatre insinde the mall to see a romantic movie. After the movie, Rita and

Marion decided to go home, while the FriTab suggests Dorothy to visit the mall first floor to take a look to

some very affordable items at the shoe shop. Meanwhile, Dorothy accomplishes her daily schedule of

physical activities. After a while, when she starts feeling tired, she presses a button on the FriTab and it

directs her back to where her walker is. She unclips her FriTab and it tells her where to get the bus home.

5 The choice of ACANTO

The Activity Planner decides a plan (Activity Plan) that implements an activity with several possibilities

for its execution. The Activity Plan is refined picking the most appropriate choice by the Reactive Planner,

which leverages its “on-the-ground” knowledge (Task 5.2). Therefore, the formal language for expressing

plans should be flexible enough to allow for a sequence of refinements. Our starting point for this

formalism will be Planning Domain Definition Language (PDDL). PDDL is widely used by researchers in

the field of planning, and is the official language of the International Planning Competition. Over the years,

13

various extensions and improvements have been proposed to allow the definition of more complex and

realistic problems and scenarios. The version 2.1 of PDDL introduces the possibility to model actions

having variable durations and producing continuous effects.

The subsequent version, PDDL 3.0, is an extension providing the formalism to express constraints and

preferences that must be considered by the planner for the generation of the final plan [56]. These features

are particularly suitable for the ACANTO framework, in particular to model the various activities, giving

different scores to each task based on the profile of the user. In addition, hard constraints can be described

based on the needs of each user (for example to remain always within a given distance from the bathroom).

The generated plan must respect all the hard constraints, and maximize the score based on the expressed

preferences. The probabilistic extension of PDDL (PPDDL) provides a set of statements that can be used to

model uncertain actions having different results, each with a given probability. The outcome of an action

can affect the value of the reward. The produced plan must therefore choose a sequence of actions

maximizing the probability of reaching the goal or maximizing the expected value of the reward. With

respect to the scenarios depicted previously, we can report the following list of hard constraints,

preferences and probabilistic preferences:

Scenario Hard Constraints Preferences
Probabilistic

preference

Use Case I: Isabel

• Always remain within

distance x from the

bathroom

• Walking

• Meeting someone who

enjoys walking

• Visiting the grocery

store

• Level of tiredness

always below y

Use Case II: Michael

• Avoid stairs

• Maximum walked

distance below x

• Speed always below y

• Stop every z meters and

rest for some minutes

• Interest in natural

history

• Visiting museums

• Avoid crowded

rooms

Use Case III: Dorothy

• Never remain alone

• Walk at least x meters

• Walk at least y minutes

(medical prescriptions)

• visiting shops with

sales

• visiting clothing shops

• watching romantic

movies

• Waiting at most x

minutes at the bus

stop

For our purposes, there is also the need to model the coexistence of interacting people. Planning problems

involving more than one person can be modelled with the adoption of a syntax like the one proposed for

the multiple agents extension of the PDDL (MA-PDDL) [57]. Another language derived from PDDL that

presents features which may be useful for the description of planning problems within ACANTO, is the

NU-PDDL [58]. In fact, it provides a specific syntax to express temporal constraints that must be respected

by the generated plan, based on Computation Tree Logic (CTL) formulae.

Another important advantage of using PDDL and its variants is that these languages are widely used by the

planning community, and for this reason there exists numerous open-source applications able to produce a

valid plan to solve the given problem. For example, over the years a number of planners has been

developed and submitted to the various International Planning Challenges, and many of them are freely

available, together with their source code. We can thus take advantage of these tools, basing our work on

some of their ideas, and integrating and adapting them for our purposes. In light of the previous analysis,

perfect candidates for ACANTO are tools like OPTIC (Optimising Preferences and Time-Dependent

Costs) [59], a planner supporting temporal problems with preferences expressed using the PDDL3

formalism.

5.1 Planning Domain

From the persepctive of the Activity Planner, all the social activities share the same family of possible
elementary actions (instantiated with different parameters), hard and soft constraints, and utility
functions. Thus, the Activity Planner adopts a static PDDL domain to model all the possible activities
that it will be required to refine into a sequence of Tasks, defined as follows:

ACANTO

14

;; DOMAIN FOR THE ACTIVITY PLANNING

;; A domain represents a general class of problems, sharing the same predicates, functions, and

;; possible actions

(define (domain Activity-Plan)

;; All the required features must be indicated, so the planner understands which features

;; it must provide

(:requirements :strips :typing :fluents :negative-preconditions :equality :durative-actions :time
:timed-initial-literals)

;; From the persepctive of the Activity Planner, the plan corresponds to the visit of a sequence of
Points of Interest, each associated with some metric information

(:types

 Poi - object

)

;; Here we define all the logical predicates for the problem, which can involve objects of the domain,
;; and define which properties are true at each state during the execution of the plan

(:predicates

 ;; the predicate “at” defines where an user is during each state. For example “at p0” means

 ;; that the user is currently at the Poi p0

 (at ?p - Poi)

 ;; the predicate “visitable” defines which Pois are visitable (for example some

 ;; activities could be temporarily not available

 (visitable ?p – Poi)

 ;; the predicate “to-visit” defines which Pois have still to be visited

 (to-visit ?p – Poi)

 ;; the predicate “link” is used to model the map of the environment, defining which Pois are

 ;; directly connected.

 (link ?p1 ?p2 - Poi)

 ;; the predicate “idle” defines whether the user is currently not executing any action

 (idle)

)

;; Here we define all the functions for the problem. Functions can take zero or more arguments,

;; defining which objects of the domain are involved. To each combination of arguments, a

;; function can associate a numerical value, which can change over time.

;; For example there could be a function “age ?p – Person”, defining for each person its age.

 (:functions

 ;; the function “min-total-distance” keeps track of the minimum distance walked from

 ;; the beginning up to now

 (min-total-distance)

 ;; the function “max-total-distance” keeps track of the maximum distance walked from

 ;; the beginning up to now

 (max-total-distance)

15

 ;; the function “min-partial-distance” keeps track of the minimum distance walked from

 ;; the last rest up to now (it is reset to 0 during each rest)

 (min-partial-distance)

 ;; the function “max-partial-distance” keeps track of the maximum distance walked from

 ;; the last rest up to now (it is reset to 0 during each rest)

 (max-partial-distance)

 ;; the function “satisfaction” is used to model the current level of satisfaction for the user,

 ;; which depends on the scores associated to the visited Pois

 (satisfaction)

 ;; the functions “min-distance” and “max-distance” are used to model the minimum and

 ;; maximum distance between each pair of connected Pois. In this way, it is possible to

 ;; compute the total walked distance.

 (min-distance ?p1 ?p2 - Poi)

 (max-distance ?p1 ?p2 - Poi)

 ;; the function “rest-duration” indicates how long each rest should last

 (rest-duration)

 ;; the function “speed” is used to model the speed at which Michael should move around

 (speed)

 ;; the function “visit-time” indicates for each Poi ?p how much time it is required to visit it

 (visit-time ?p – Poi)

 ;; the function “interest” indicates for each Poi how much the user is interested in it

 (interest ?p – Poi)

)

 ;; durative-actions are used to model actions with some (even variable) duration, and having

 ;; temporal conditions and effects

 ;; the durative-action move represents the task of moving from one Poi of the museum

 ;; to another

 (:durative-action move

 :parameters (?from – Poi ?to – Poi)

 ;; the duration of the move action depends both on the distance between the two Pois, and also

 ;; on the speed at which the user moves

 :duration (= ?duration (/ (max-distance ?from ?to) (speed)))

 ;; the conditions are that the user at the beginning must be at the ?from Poi, he

 ;; must be idle, and the two Pois must be connected

 :condition

 (and

 (at start (at ?from))

 (at start (link ?from ?to))

 (at start (idle))

ACANTO

16

)

 ;; the effects are that at the end the user will be at the destination (?to) Poi, and both the

 ;; partial and the total walked distance are suitably increased

 :effect

 (and

 (at start (not (at ?from)))

 (at start (not (idle)))

 (at end (at ?to))

 (at end (increase (min-total-distance) (min-distance ?from ?to)))

 (at end (increase (max-total-distance) (max-distance ?from ?to)))

 (at end (increase (min-partial-distance) (min-distance ?from ?to)))

 (at end (increase (max-partial-distance) (max-distance ?from ?to)))

 (at end (idle))

)

)

 ;; the durative-action “rest” represents the task of resting for some time

 (:durative-action rest

 :parameters (?p - Poi)

 ;; the duration of the rest is indicated by the value of the “rest-duration” function

 :duration (= ?duration (rest-duration))

 ;; At the beginning, the user must be idle

 :condition

 (and

 (at start (idle)

 (at start (at ?p))

 (over all (at ?p))

 ;; at the end the user exits from the “resting” state, and the partial walked distance is reset to 0

 :effect

 (and

 (at start (not (idle)))

 (at end (idle))

 (at end (assign (partial-distance) 0))

)

)

;; the durative-action “visit” represents the task of visiting a Poi

(:durative-action visit

 :parameters (?p – Poi)

 ;; the duration depends on the specific “visit-time” for Poi ?p

 :duration (= ?duration (visit-time ?p))

 ;; the Poi must not have been already visited, and the user must be idle.

 ;; In addition, the user be at that specific Poi and the Poi

 ;; must be in the state “visitable”

17

 :condition

 (and

 (at start (not (visited ?p)))

 (at start (idle))

 (at start (visitable ?p))

 (over all (visitable ?p))

 (at start (at ?r))

 (over all (at ?r))

)

 ;; At the end the Poi is flagged as “visited”, and the level of satisfaction is increased

 ;; depending on the interest for the specific Poi

 :effect

 (and

 (at start (not (idle)))

 (at end (idle))

 (at end (visited ?r))

 (at end (increase (satisfaction) (interest ?p)))

)

)

)

5.2 Extension to groups

Up to now we have shown the main concepts and ideas adopted to model Activity Plans, considering
a scenario with a single user. However, in order to achieve the social aspect of ACANTO activities, the
planner must support a context where an activity is carried out by more than one person.

However, since the kind of possible actions, constraints and preferences remains the same, a minor
extension of the original model suffices to provide support for a multi-agent context.

The planning domain can be extended by introducing a new type of object to represent an Agent
named “User”. In addition, a score is given by each User to each PoI. Soft constraints associated to
each person (e.g. “prefer plans avoiding the use of lifts”) are modelled as costs given to the different
PoIs and connectors between pairs of PoIs:

 ;; the level of interest of an user ?u to a specific PoI ?p

 ;; (inferred from the user profile)

 (interest ?u - User ?p - Poi)

 ;; the cost given by an user ?u to a specific PoI ?p

 ;; (inferred from the user profile)

 (poi_cost ?u - User ?p - Poi)

 ;; the cost given by an user ?u to a link between two PoIs

 ;; ?p1 and ?p2 (inferred from the user profile)

 (link_cost ?u - User ?p1 - Poi ?p2 - Poi)

The hard constraints are generated as the conjunction of all the hard constraints of each user. For
example, the constraint on the total duration max-global-time is determined as:

max-global-time = 𝑚𝑖𝑛𝑢∈Users max-time-allowed (𝑢)

ACANTO

18

The metric function to optimize is then the weighted sum of the overall score of the visited PoIs for
all the users, and the overall costs deriving from the violation of the soft-constraints:

where x[i] is a Boolean indicator variable, indicating whether the i-th PoI is part of the solution,
𝑦[〈𝑝𝑖 , 𝑝𝑗〉] indicates wheter the link 〈𝑝𝑖 , 𝑝𝑗〉 is part of the solution, and 𝑤1, 𝑤2, 𝑤3 ∈ ℝ are weighting

factors, allowing us to give different weights to the overall interest and to the violation of soft
constraints involving both PoIs and connectors.

5.3 An example

In what follows we present how the Use Case II (referred to Michael) can be encoded into an instance
of a PDDL planning problem (according to the Activity Planning domain), that can be solved by the
Activity Planner to determine the plan to be executed.

;; PROBLEM VISIT

;; a problem represents a specific instance of a planning problem, defining which are the specific

;; objects, and the initial and goal conditions

(define (problem VISIT)

 (:domain MUSEUM)

 ;; for this scenario, we model the different Pois for the Museum of National History.

 ;; In particular, there is a room dedicated to plants, one dedicated to animals and one dedicated to

 ;; fungi, all represented as Points of interest. In addition, the atrium is represented as a Poi

 ;; where the execution of the plan must start and end

 (:objects

 roomPlants - Poi

 roomAnimals - Poi

 roomFungi – Poi

 …

 atrium – Poi

)

 (:init

 ;; initially Michael is in the atrium. We define the links between the various rooms.

 ;; Then we define which rooms are “visitable”.

 (at atrium)

 (link atrium roomPlants)

 (link roomPlants atrium)

 (link roomPlants roomAnimals)

 (link roomPlants roomFungi)

 …

 (visitable roomPlants)

 (visitable roomAnimals)

19

 (visitable roomFungi)

 ;; here we initialise the values of the functions, setting to 0 the walked distances, and defining

 ;; Michael’s level of interest for each of the Pois (30 for plants, 60 for animals, and 15 for fungi).

 ;; We also define the distance between each pair of connected locations, the duration of each rest,

 ;; the walking speed, and the time required to visit each room.

 (= (min-total-distance) 0)

 (= (max-total-distance) 0)

 (= (min-partial-distance) 0)

 (= (max-partial-distance) 0)

 (= (interest roomPlants) 30)

 (= (interest roomAnimals) 60)

 (= (interest roomFungi) 15)

 (= (max-distance atrium roomPlants) 15)

 (= (max-distance roomPlants roomAnimals) 10)

 …

 (= (rest-duration) 300)

 (= (speed) 1)

 (= (visit-time roomPlants) 600)

 (= (visit-time roomAnimals) 900)

 (= (visit-time roomFungi) 600)

 ;; here we define some timed initial literals, to model predicates which become true/false at some

 ;; specific time instants after the execution of the plan, and which can be used to model some

 ;; known exogenous events.

 ;; For example, here we model the fact that between time 700 and time 1000 the room

 ;; “roomPlants” becomes unavailable (e.g. there is a guided tour during that interval)

 (at 700.00 (not (visitable roomPlants)))

 (at 1000.00 (visitable roomPlants))

)

;; for this problem, Michael’s final goal is to be at the atrium and to have walked a distance between

;; 30 and 100 meters

(:goal

 (and

 (at atrium)

 (>= (min-total-distance) 30)

 (<= (max-total-distance) 100)

 …

)

)

;; here we define some hard constraints and some preferences

(:constraints

 (and

 ;; the partial distance walked (between two consecutives rest) must always be lower than 25

 ;; meters

 (always (<= (partial-distance) 25))

;; for this problem, we want to maximize Michael’s satisfaction

(:metric maximize

ACANTO

20

 (satisfaction)

)

6 Semantic representation of plans

In ACANTO, the notion of optimality is with respect to the goals of the activity, which may require a
minimum distance travelled, a maximum amount of time or a minimum number of calories burned.
While the notion of undesirable circumstances still exists (e.g., undesirable areas in the environment
and crowding), maximising progress, in the sense of minimising distance and time spent travelling,
may not be the primary goal. Users or carers may nevertheless specify a maximum time for an
activity. In ACANTO, the user may be part of a group, thus the execution of an activity, the constraints
and metrics to apply to the various point of interest and interconnections must be considered with
respect to the entire group.

From the perspective of the Activity Planner, an activity corresponds to a sequence of points of
interest to visit in a certain order, depending on the existing interconnections among the various
Pois in the abstract representation of the environment. The Activity Planner is thus required to
synthesize a sequence of tasks representing the transfer and visit of the different Pois, trying to
optimise the overall score (depending both on the level of interest for the different Pois, and on the
satisfaction of the soft constraints) while fulfilling all the hard constraints. The tasks composing a
plan are thus of the form “nextPoi Pi Pj”. To each of these tasks is associated a sequence of elementary
actions to be performed before leaving the current Poi Pi, the action corresponding to the motion
between Pi and Pj, and a sequence of actions to be executed after reaching Pj. The actions to be
performed before leaving or after reaching a certain point of interest depend on the specific point of
interest involved (e.g. if the Poi is a painting in a museum, the action when reaching it could be to
display some related information on the FriTab).

7 Monitoring the execution

At an abstract semantic level, an activity is the traversal of a graph and an activity plan is a
concatenation of edges. At a concrete syntactic level, such a path will be represented by elementary
control actions in a language such as PDDL, as described above. The control actions will specify
precisely how to navigate from one node in the environment to the next. To meet the high level
requirements of an activity, such as the number of calories to consume, the control actions may also
specify a required speed and other information, such as probabilistic distributions. The Activity
Planner makes use of probabilistic information (e.g., the probability of being able to make progress
at a desired speed, given the amount of crowding) in a deterministic way.

Each control action has inherent pre- and post-conditions that may or must be satisfied, depending
on the context. Many of the pre- and post-conditions of control actions will be implicitly encoded in
the edge weighting function. A priori, the plan will be designed to satisfy all constraints, but the user
may from the outset be forced or choose to deviate from the original plan. Such deviations may arise
by virtue of crowding or due to the uncooperativeness of the user. In the first case, the deviation
could be suggested by the Reactive Planner; in the second case, the user may simply ignore the
instructions given by the FriTab. In either case, there may be a significant reduction in the
probability of satisfying the goals of the original activity plan. It might also be the case that, in
deviating, the user performs more exercise and burns more calories than anticipated. It is therefore
necessary to monitor the plan’s progress and react accordingly.

The Activity Monitor will thus construct path metrics that quantify what has actually taken place so
far (e.g., what distance and how fast the user has travelled; the number of calories the user has
consumed; social interaction) and what remains to be done to achieve the goals of the activity
(remaining distance to travel and number of calories yet to burn, etc). The metrics can be
represented as edge weights that are summed over the length of a path. In the case that the Activity
Monitor judges that the current plan is unlikely to achieve the goals of the activity, it will trigger a re-
plan.

21

In DALi, a new long term plan is generated if the user strays too far from the original plan. In
ACANTO, the initially proposed route of an activity may be considered only a “soft” constraint that
may be violated, with the metrics over the route being more important. In contrast, constraints that
arise from the user’s profile, such as the user’s maximum speed and the maximum time the user is
prepared to spend on the activity, will be considered “hard” constraints that must not be violated.

A new activity plan will therefore be generated when the activity metrics diverge significantly from
their desired values or when the Activity Monitor predicts that the metrics will diverge in the future
with high probability. The Activity Planner may skip some or all of the remaining planned sub-
activities. This could arise because the allotted time for the activity has been reached or because the
user has already had sufficient exercise or consumed sufficient calories as a result of unplanned
detours. In general, the Activity Planner will try to achieve as many of the soft constraints and goals
as possible, while always respecting the hard constraints.

The Activity Planner may have to consider conflicting constraints that cannot be entirely encoded in
an edge weighting function. For example, circumstances could arise such that the remaining time
allotted to an activity is insufficient for the user to consume the required number of calories or travel
the required distance, given the users maximum comfortable speed. This will become clear from the
output of the path planner (e.g., the chosen optimal path will have an overall time that is too great),
but must be handled by higher level logic. To resolve such problems, we assume that activities will
be composed from a series of sub-activities (tasks), each making a quantified and prioritised
contribution to the overall activity. The Activity Planner will thus be able to discard the least
beneficial remaining sub-activities, in order to achieve as much of the originally planned benefit as
possible, without violating the user’s hard constraints.

The foregoing descriptions have been user-centric, but it is the specific intention of ACANTO to
consider group activities. There must be some online collaboration between the motion planners of
different users, to maintain the cohesion of the group.

The means by which the Reactive Planner will maintain group cohesion on a specified plan has been
described in Deliverable D5.2, however the Activity Planner may wish to change the plan with
respect to an individual’s specific requirements. In general, it is desirable to make each FriWalk /
FriTab as autonomous as possible. To prevent the Activity Planner compromising this goal (e.g., by
needing to regularly communicate with other users in order to find a consensus plan), we suppose
that the system will pre-define how the activity will be modified in the event that it must be
truncated. To implement this “implicit collaboration” efficiently, each Activity Planner should be
aware of the limitations of the other users. A further problem is that although the participants of
group activities will be chosen to have roughly equivalent abilities, the actual distance travelled
(effort expended, calories burned, etc) by individuals will be different. This limits the accuracy with
which it is possible for one FriWalk / FriTab to predict the re-planning needs of another without
sharing information.

The a priori information used by the Activity Planner and the Monitor Service is based on statistical
data collected from previous instances of ACANTO Activities recorded in the past by the Activity
evaluator or from simulation and predictions. Additional live information on the environment can be
provided by the real time sensing system.

ACANTO

22

8 Conclusion
The PDDL language is suitable to represent activity plans at a syntactic level. We have shown that
this language is adequately expressive to represent probabilistic information and other annotations
necessary for the activity planning required by the ACANTO case studies. We have described how we
intend to abstract the environment into a graph data structure and how various metrics relating to
an activity can be encoded in the weights assigned to its edges. Paths in the environment that
optimise parameters of an activity can thus be found by finding the optimal path in the abstract
graph. The metrics will also be used to monitor the progress of the user with respect to an activity
and anticipate when the activity needs to be re-planned or terminated.

23

10 Bibliography

[1] ACANTO Consortium. ACANTO Project, Feb. 2015.

[2] DALi Consortium. DALi Project, Nov. 2011.

[3] S. M. LaValle. Planning algorithms. Cambridge university press, 2006.

[4] J. C. Doyle, B. A. Francis, and A. Tannenbaum. Feedback control theory, volume 1.

Macmillan Publishing Company, New York, 1992.

[5] D. E. Koditschek and E. Rimon. Robot navigation functions on manifolds with boundary.

Advances in Applied Mathematics, 11(4): 412–442, 1990.

[6] S. R. Lindemann, I. I. Hussein, and S. M. LaValle. Real time feedback control for

nonholonomic mobile robots with obstacles. In Proc. IEEE Conference on Decision and Control,

pp. 2406–2411, 2006.

[7] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic roadmaps for
path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and

Automation, 12(4): 566–580, 1996.

[8] S. M. LaValle. RRT-connect: An efficient approach to single-query path planning. In Proc.

IEEE Conference on Robotics and Automation, pp. 995-1001, 2000.

[9] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion planning. The

International Journal of Robotics Research, 30(7): 846–894, 2011.

[10] M. Ghallab, D. Nau, and P. Traverso. Automated planning: theory & practice. Elsevier,

2004.

[11] T. L. Dean and M. P. Wellman. Planning and control. Morgan Kaufmann Publishers Inc.,

1991.

[12] R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of theorem

proving to problem solving. Artificial intelligence, 2(3): 189–208, 1972.

[13] M. Fox and D. Long. PDDL2. 1: An Extension to PDDL for Expressing Temporal Planning

Domains. Journal of Artificial Intelligence, v. 20, pp. 61-124, 2003.

[14] E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT press, 1999.

[15] C. Baier, J. P. Katoen, et al. Principles of model checking. MIT press Cambridge, 2008.

[16] K. L. McMillan. Symbolic model checking. Springer, 1993.

[17] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. J. Pappas. Symbolic

planning and control of robot motion [grand challenges of robotics]. Robotics & Automation

Magazine, IEEE, 14(1): 61–70, 2007.

[18] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas. Temporal logic motion

planning for dynamic robots. Automatica, 45(2): 343–352, 2009.

[19] A. Bhatia, L. E. Kavraki, and M. Y. Vardi. Sampling-based motion planning with temporal

goals. In Proc. IEEE International Conference on Robotics and Automation, pp. 2689–2696,

2010.

[20] A. Colombo, D. Fontanelli, A. Legay, L. Palopoli and S. Sedwards. Efficient customisable

dynamic motion planning for assistive robots in complex human environments. Journal of

Ambient Intelligence and Smart Environments, 7(5): 617-633, IOS PRESS NIEUWE HEMWEG

6B, 1013 BG AMSTERDAM, NETHERLANDS, 2015.

[21] P. Tabuada and G. J. Pappas. Linear time logic control of discretetime linear systems. IEEE

Transactions on Automatic Control, 51(12): 1862–1877, 2006.

[22] E. Aydin Gol and M. Lazar. Temporal logic model predictive control for discrete-time
systems. In Proceedings of the 16th international conference on Hybrid systems: Computation

and Control, 343–352. ACM, 2013.

[23] B. Yordanov and C. Belta. Formal analysis of discrete-time piecewise affine systems. IEEE

Transactions on Automatic Control, 55(12): 2834–2840, 2010.

	1 Executive Summary
	2 Introduction
	3 State of the art
	4 Case studies
	5 The choice of ACANTO
	5.1 Planning Domain
	5.2 Extension to groups
	5.3 An example

	6 Semantic representation of plans
	7 Monitoring the execution
	8 Conclusion
	9
	10 Bibliography

