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1 Executive Summary 
 

This deliverable concerns the representation of activity plans, which must be adequately expressive 
to accommodate probabilistic information and verification, while being efficient to implement. In this 
work we thus analyse and describe the syntactic and semantic representation of activity plans. We 
first survey various motion planning languages, to identify the most suitable in our context. We then 
present case studies relevant to ACANTO and use these to motivate our choice of planning language. 
We then explain how the semantics of activity planning will be implemented and how it links to the 
syntactic representation. We conclude by extending our planning model to introduce the support for 
group activities. 

In summary, we have identified the Planning Domain Definition Language (PDDL) language as a 
suitable means to represent activity plans at a syntactic level. We show that this language is 
adequately expressive to represent probabilistic information and other annotations necessary for 
the activity planning required by the ACANTO case studies. We describe how we intend to abstract 
the environment as a graph where the nodes represent the set of possible Points of Interest to visit. 
In this way, the motion actions associated to an activity plan correspond to edges connecting pairs of 
Points of Interest, to which we can give various weights, corresponding to different metrics related 
to the properties and constraints of an activity. The planning of activity thus corresponds to finding a 
path in the abstract graph visiting a subset of the points of interests, while fulfilling all the hard (and 
possibly also the soft) constraints. The metrics will also be used to monitor the progress of the user 
with respect to an activity and anticipate when the activity needs to be re-planned or terminated.  

This document reports the final outcome of our efforts, which started in P1 with the production of a 
preliminary report (D2.5). The most important novel contributions contained in the present 
document are: 1. We make our final choice on the language used, whereas in the previous version we 
just studied a range of possible options, 2. We have completely defined a general domain for activity 
definition using the PDDL language (in the first version, we had just shown a small-scale example), 3. 
We have extended and generalised the model to encompass the case of groups of users, 4. We have 
updated the two last sections to reflect the changes made in the Activity Monitor and in the Activity 
Planner. 
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2 Introduction 
The main objective of Task 2.3 is to provide an effective means to represent the activity planned for 
the user. The language to synthesize and represent the activities has to be flexible enough to 
comprise the following features: a) probabilistic planning and different levels of rewards according 
to the user experience and planned exercise; b) synthesis by means of control actions (which is 
another outcome of Task 2.3 and discussed in this deliverable); c) monitoring capability of the 
planned activity; d) possibility to measure the maximum deviation degree from the planned activity. 

Figure 1 illustrates the basic elements and interactions of our proposed motion planning 
architecture. The Activity Planner constructs an Activity Plan from a palette of alternatives, 
according to the requirements it is provided (e.g., amount of exercise, undesirable areas). The 
Reactive Planner monitors the user’s physical location with respect to the plan, other moving and 
static objects in the environment, and the constraints it is provided (e.g., desirable proximity to 
others). As a result, it suggests a notionally optimal direction of movement to the user. The user may 
not necessarily follow the suggestions, but at all times the Sensors calculate the user’s actual position 
with respect to surrounding objects. If the user strays too far from the plan for a long time, the 
Motion Execution Monitor component of the Reactive Planner informs the Activity Execution Engine, 
that may require a re-planning of the whole Activity. The Activity Execution Monitor monitors the 
user’s progress with respect to the high level goals of the activity (e.g., maximum elapsed time).  Like 
the Reactive Planner, if at any time the Activity Execution Monitor judges that the goals of the 
Activity Plan have not or will not be achieved, it will request a re-plan from the Activity Planner. 

 

 
Figure 1 

In what follows, we first present an overview of the possibilities available for planning in similar contexts 

and draw our conclusions presenting the ACANTO choice using specific case studies. We then relate the 

syntactic choice to the underlying semantics of motion planning and describe how activities will be 

executed and monitored. Finally, we summarise our approach and highlight areas of ongoing research. 

 

3 State of the art 
 

In the realm of planning, the problem of finding a suitable sequence of control actions that leads an 
electromechanical platform from an initial configuration to a desired configuration is usually 
referred to as motion planning, which involves systems with continuous dynamics given as ordinary 
differential/difference equations. To highlight this characteristics, motion planners are usually called 
continuous state space motion planners [3], less often control problem in Control Theory [4]. The 
distinctive feature of these approaches is that they are usually quite easy to be expressed, but very 
difficult to solve. This peculiarity gave birth to a plethora of solutions that treats the motion planning 
problem in combination with constrained motion areas, e.g., navigation functions for sphere 
workspace and obstacles [5], potential field-based control algorithm for workspace with geometric 
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partitions [6], sampling-based motion planning techniques like probabilistic roadmap method [7], 
and rapidly-exploring random trees [8, 9].  

A radically different approach has been historically followed by the Artificial Intelligence community 
[10], in which the planning problem is seen as a sequence of possible control actions that act on the 
system and change its configuration. In such a case, the planner does not deal with a motion planning 
problem but, more appropriately, with a task planning problem. The greatest distinction between 
motion and task planning is that the state space in motion planning is continuous and possibly 
unbounded, making it impossible to enumerate all the states explicitly as in task planning. Usually, 
these problems are manageable whenever a finite, well established set of control actions is available. 
This makes another remarkable different with motion planners where the set of allowed actions is 
infinite given the continuous input space. Each control action is described by: 

 

The precondition that has to be fulfilled before the action can be performed; 

The effect on the system state after performing the action. 

 

Again, since for motion planners the dynamical system may evolve differently under the same 
actuation signal from different initial states, the notion of the action conditions and effects are not 
well defined. For task planners, instead, the system is modelled as a discrete state transition system 
[11] and different states representation are available, which results in different complexities when 
solving the planning problem. Logic-based representation is currently one of the most popular 
formalisms used by many planning tools, like STRIPS [12] and PDDL [13]. An interesting feature of 
these approaches is that the solving process is similar to human deliberation that chooses and 
organizes actions by anticipating their outcomes. 

 

STRIPS representations are based on the definition of initial and goal states, and on actions having pre-

conditions and post-conditions (effects), defined using propositional logic formulae. Over the years, new 

formalisms and tools have been defined to model problems of increasing complexity, with the aim of 

solving problems closer to real world scenarios, and with practical applications. A first improvement is the 

Action Description Language (ADL) [47], introducing the possibility to define first-order logic predicates, 

and actions having conditional effects, happening only when individual preconditions for each effect hold. 

[48]. Further tools have been proposed to handle temporal actions and tasks, and to model numeric 

properties evolving over time. For example, the extension of PDDL 2.1 [13] introduces numeric fluents 

and durative actions to model these elements. Another solution working with temporal domains is IxTeT 

[49], defining a language similar to PDDL2.1, but more powerful, as it gives the possibility to access 

specific time points within the execution of durative actions.  

Other languages have been developed to support planning problems with specific domains. For example, 

the NASA has developed the NDDL [50] and then the ANML (Action Notation Modeling Language) [51] 

as languages for planning missions and activities. Both these languages allow the expression of temporal 

relations and constraints. In particular, the ANML, similarly to the PDDL, is based on the concepts of 

actions and states, but supports valued variables and rich temporal constraints. In addition, it provides a 

simple way to model resources and their usage (e.g. fuel, energy). 

The introduction of additional formalisms has increased the expressiveness of planning languages, giving 

the possibility to model soft and hard constraints on the trajectory of the plan, to model partial 

observability, the presence of different initial states, and of actions having different, non-deterministic 

effects [52, 53]. Finally, solutions have been proposed to model probabilistic problems like for example 

Markov Decision Processes, where the effects of actions have probabilistic distributions, and state 

transitions may produce different rewards. Usually, the aim of this kind of problems is to maximize the 

expected reward, as for example in the probabilistic extension of the PDDL [54]. Another language 

developed quite recently as an extension of both the PDDL and the Probabilistic-PDDL is the RDDL 

(Relational Dynamic Influence Diagram Language) [55]. It allows the modelling of nonlinear difference 

equations and unrestricted concurrency. Moreover, it supports partial observability and exogenous effects 

having some known probability distributions. 

 

The most interesting feature of task planners is their ability to enumerate all the motion possibilities 
by means of control actions. This fact opens to the application of model checking techniques for the 
synthesis of the planning path.  Given a finite transition system modelling the actual hardware or 
software system or its abstraction, a model checker exhaustively and automatically verifies if the 
given model satisfies a given specification, which normally involves security requirements such as 
absence of bad states and deadlocks [14, 15, 16]. The automaton-based model-checking algorithm 
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returns either success indicating that all possible system behaviours satisfy the property, or a 
counterexample as one possible behaviour that fails the property. The propositional and temporal 
requirements on the system behaviour are specified using temporal logic language, such as model-
checking algorithms have been conceived for verification, they are becoming attractive also for 
synthesis.  In fact, the purpose of verification is to find any system behaviour that violates the 
property, therefore for the synthesis we are interested in finding one of the system behaviours 
satisfying the property, and more importantly that is optimised regarding certain cost functions. 
There has been many recent work that integrates motion planning algorithms with model-checking 
techniques to treat complex motion tasks specified by temporal logics [17, 18, 19]. In such a case, 
temporal logics such as Linear Temporal Logic (LTL) and Computation Tree Logic (CTL) have been 
found very efficient in providing a formal and high-level way of describing motion objectives that are 
much more complex than the classical point-to-point navigation problems, e.g., coverage of several 
regions, sequential visits, response or surveillance. The possibility of applying model checking 
techniques to path synthesis have been investigated in [20] during the DALi project [2]. 

The model-checking-based controller synthesis has been applied to both complex dynamical systems 
and autonomous robots: [21] considers the control strategy synthesis for discrete-time linear 
systems where the control objective is given by linear temporal logic formulas, beyond the usual 
stabilization and output regulation objectives; [22] proposes an optimal control strategy for discrete-
time systems under the temporal logic constraints and a quadratic cost function; [23] and [24] 
present a computational framework for the a feedback control strategy synthesis of discrete-time 
piecewise affine systems, where the specification is given as linear temporal logic formulas over 
linear predicates; [25] provides a robustness index for the satisfiability of continuous-time signals 
under temporal logic specifications; [26] synthesizes a generic cyber-physical system with respect to 
a metric temporal property. Fainekos et al. [27] firstly proposes the complete framework of 
automated controller synthesis for autonomous robots under temporal logic tasks. The robot’s 
motion is abstracted by its dynamical transitions within a partition of the workspace, as a finite 
transition system. Then a high-level discrete plan as a sequence of regions to visit is synthesized by 
the modified model-checking algorithms, which is then implemented by low-level continuous 
controller executing the control actions.  

 

One major drawback of the proposed approaches, that are computed off-line at the beginning of the 
mission, is their inability of reacting in real-time to changes in the environment. Indeed, the basic 
assumption is that the workspace is perfectly known and is correctly represented in the finite 
transition system [28]. Some extensions consider the incomplete representation of the workspace 
[29] by modelling the robot’s motion in the uncertain surrounding environment using a 
nondeterministic Markov decision process, where the goal is to find a control strategy that 
maximises the probability of satisfying the specification. Other approaches use a game-theoretic 
approach to model the game between the robot and the environment and then synthesise a strategy 
for the robot by exhaustively searching through all the possible combinations of the robot 
movements and the admissible workspaces [30], [31]. Instead of aiming for an off-line motion plan 
considering all the possibilities, [32] proposes to create a preliminary plan based on the initially 
available knowledge about the robot and the workspace and then use real-time observations about 
the workspace and the plan monitored execution to verified and, in case, revise the original plan. 
Similar ideas appear in [33] by locally patching the invalid transitions. 

 

The approach taken in ACANTO in this respect is different, since the goals of the Activity Planner and 
Reactive Planner are significantly distinct and we do not attempt to use them both to achieve the 
same goal. The Activity Planner is concerned with completing high level activities under various 
constraints, such as distance from a bathroom, ideal calorific burn, achievement of major milestones, 
minimum pace. The Reactive Planner is instead focused on reaching the next waypoint in the activity, 
trying to avoid collisions and maintaining group cohesion. Hence, we delegate high level planning, 
constraints and goals to the Activity Planner, and otherwise operate in a monitoring role with the 
Reactive Planner, handling the finer details. For example, the Activity Planner may pick a path 
through the mall and inform the Reactive Planner of the next waypoint. However, significant 
deviation to avoid collision (or violating an Activity Planner constraint) can force re-planning. In the 
other direction, the motion taken by the user is reported back to the Activity Monitor to account for 
the actual costs/constraints rather than those projected in planner (e.g. a path may be projected to 
cost 110 calories, but the user expends 120 calories). 
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In fact, the classic motion planning framework presented previously framework reports a failure 
when the given task specification is not realisable [34]. To have a measure of the deviations from the 
original plan, [35,46] suggests to address the problem in a systematic and find the feasible relaxed 
specification automaton that is closest to the original one, while [36] introduces a way to determine 
the cause of an infeasible task analysing the environment and the system jointly. [37, 38, 39] follow a 
different approach by providing a way to synthesise a feasible path that “fulfills the most” the 
infeasible task. These approaches align with the proposed approach above for ACANTO, in order to 
impose further constraints to the Reactive Planner (Task 5.2) using the information of the Activity 
Monitor (Task 5.3). 

 

Another important research thread for planners is related to the intrinsic distributed nature of the 
application. Indeed, there is an increasingly number of applications in which a set of cooperating 
agents coexist in the same environment to reach a common goal. Two main paradigms can be 
distinguished for planning algorithms. On one hand, there is a tightly-coupled and top-down 
approach, where the overall plan is split into a set of sub-tasks and then each agent is assigned one of 
the identified sub-tasks and then the agents execute them in a synchronized manner [40, 41]. On the 
other hand, there is a loosely-coupled and bottom-up approach in which the cooperation is intended 
as an emerging behaviour of the team. In practice, there is no global task and each agent acts 
according to its own plan in order to accomplish the task, meanwhile it interacts with other agents 
when necessary, in terms of information exchange and collaborations.  

 

Our application in the ACANTO project fits into the second group, since each user must be able to 
plan independently (especially if connection to the infrastructure is lost), and needs to know about 
or consider the plans of all other users in the vicinity. This is further reinforced by recognising that 
while groups may be able to share some common planning information (particularly at the activity 
level), in general many agents will not share identical constraints, and goals; and that this 
information should not necessarily be disseminated. 

 

Interestingly, the model checking-based control synthesis framework has also been extended by 
many research teams to a multi-agent system consisting of autonomous agents. Among the others, 
[42] and [43] decompose a global task specification to bi-similar local ones in a top-down manner, 
[44] deals with distributed optimal path synthesis under traveling time uncertainties given an 
assigned global goal. Linear temporal tasks have been instead considered for a  multi-UAV routing 
problem by [9]. A totally decentralised approach is instead followed by [37] and [45], where a team 
of cooperative agents with different, independently-assigned, even conflicting individual tasks is 
considered. 

 

Based on the analysis here presented, the following table reports a summary of the solutions that best fits 

the the activity planner requirements of ACANTO. 
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FORMALISM FEATURES 

STRIPS 

Simple formalism. 

Definition of initial and goal states. 

Definition of propositional variables. 

Definition of actions, having preconditions (must 
hold) and postconditions (effects), involving the 
propositional variables. 

Action Description Language (ADL) 

Action language like STRIPS.  

Possibility to define first-order logic predicates. 

Possibility to define conditional effects, happening 
only when some preconditions hold. 

IxTeT 

Language based on actions (tasks), with multi-
valued domain attributes. 

Possibility to define temporally qualified 
conditions and effects (events), happening at 
specific points during the execution of an action.  

Possibility to express temporal constraints 
regarding each task. 

NDDL 

Language to model hybrid systems.  

Based on the definition of variables and 
constraints. 

Support for user defined classes. 

Support for temporally qualified states and 
actions.  

Possibility to define temporal constraints and 
relationships between different actions. 

ANML 

Based on the modelling of actions and states. 

Support for multi-valued variables. 

Support for rich temporal constraints. 

Support for action conditions, effects and resource 
usage. 

Support for HTN (Hierarchical Task Networks) 
decomposition. 

Specific formalisms to model resources (like 
battery charge) and their use 

PDDL 1.0 

Possibility to define problems making use of 
different features, by indicating for each problem 
the needed requirements. 

Based on states and actions. 

Support for ADL conditional effects. 

Possibility to define a domain file used for 
multiple problems. 

PDDL 2.1 

Extension of PDDL 1.0. 

Support for numeric properties evolving over 
time, having discrete or continuous changes 

Support for temporal problems through durative 
actions 

Support for plan metrics, to define some 
numerical quantities that must be 
maximized/minimized 

PDDL 3 Extension of PDDL 2.1 levels 1 and 2. 
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4 Case studies 
 

To illustrate our choices more concretely in Section 5, in this section we briefly recall three use cases 

relevant to ACANTO, as idendified by WP1. 

 

First Use Case 

 

Isabel is an 82 year old woman who has lived alone for the past two years. She lives in a flat by herself in 

Newcastle. She no longer goes out very often and has become very physically inactive, even if her doctor 

suggested to stop with this unhealthy behaviour. Her daughter brings her groceries once a week. While 

Isabel used to enjoy going for walks, she no longer has anyone to go walking with. She recalls the times 

she spent walking with fondness and wishes that she had someone to go walking with. One day, she 

receives an invitation by mail to try out the new FriTab and FriWalk system. After receiving the system 

when a researcher visits her, she tells the system about her background and interests. She tells the system 

that she used to enjoy walking. Later that day, the FriTab suggests that she meet a lady in the next street, 

Martha, who likes to visit the local shopping mall and has the same platform. The system has noticed that 

Isabel does not have many friends and believes that if she had a friend who also enjoyed going for walks, 

she might go there again. Isabel is hesitant at first but then agrees to meet up and try out the FriWalk. The 

FriTab tells Isabel to meet Martha the following Wednesday at 10am to enjoy a morning together at the 

shopping mall. Once she arrives to the shopping mall, the FriWalk shows the directions to get in touch with 

Martha at the prescribed time. Since Martha has a similar FriWalk, the two ladies meet with any problem. 

Isabel and Martha go for a walk in the mall and decide to buy some groceries on their own. The FriWalk 

suggests the route and monitor the execution of the activity, in order to report to her medic the physical 

activity that has been carried out. During the walk, the FriTab realises that Martha feels a little bit tired and 

suggests to interrupt the planned activity. The FriTab suggests Isabel and Martha to have lunch in a local 

cafe. The FriWalk devices guides them gently to the desired cafe where they have a pleasant lunch and 

agree to meet up again in the following days. 

 

Support for trajectory constraints that must be 
respected by the generated plan 

Support for preferences (soft constraints) 

Soft constraints can have different priorities, 
causing different penalties when violated 

Probabilistic PDDL 

Extension of PDDL 2.1. 

Support for probabilistic effects (different 
outcomes having different probabilities). 

Introduction of a specific fluent, reward, to model 
Markovian rewards, associated to each state 
transition. 

The plan must maximize the probability of 
reaching the goal state, or the expected value of 
the reward. 

Multi Agent PDDL 

Extension of PDDL 3. 

Introduces the support for plans with multiple 
agents. 

Possibility to model interactions and 
collaborations between the different agents.  

RDDL 

Extension of both PDDL and Probabilistic PDDL.  
Support for nonlinear difference equations and 
unrestricted concurrency.  
States, actions and observations are parametrized 
variables.   
Evolution over time modelled by stochastic 
functions to define the value at the next state of 
each variable, depending on the current values of 
state and action variables.  
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Second Use Case 

 

Michael is a 72 year old man who lives alone in Felling, Gateshead. For the past few years, he has found 

mobility very difficult and he is waiting for a hip operation. Consequently, he doesn’t get out much. He 

used to enjoy visiting museums and now fulfils his passion for natural history by watching documentaries 

on TV. He would like to be able to get out to visit the museums in Newcastle. 

A researcher visits Michael one day and shows him the FriTab. Michael explains to the researcher that he 

has mobility problems so wouldn’t be able to get out much. But the researcher explains the FriWalk to him 

which is owned by several shops, galleries and museums in the area. He also explains that people on the 

FriTab network may be able to help him get transported to locations and events. So Michael enters his 

details into the system and tells it that he has mobility problems. The information on  Michael’s profile are 

also updated by his doctor, who also enters some contraints concerning the activities Michael can safely 

carry out. 

The next day, the FriTab shows Michael that a tour is being organised at the Hancock Museum. It invites 

him to attend and tells him that another person attending would be willing to pick him up. The system 

knows that Michael enjoys natural history and that he also has mobility problems. It knows that the 

museum has several FriWalk devices that can help Michael. It also knows that one other attendee has a car 

and is willing to transport friends. Michael is hesitant but agrees to give it a try. So he tells the system that 

he will attend. The FriTab tells him that Jane will pick him up before the event in her car. Michael tells her 

his address. 

At the arranged time, Jane picks Michael up and they drive to the museum. When he arrives at the 

museum, he is given a FriWalk which helps him to walk with the rest of the tour group. After the tour is 

over, the FriWalk even suggests a guided tour of its own that Michael can do alone without violating the 

medical prescriptions. However, Michael is tired but decides to come back and try the guided tour another 

day. The FriTab forwards the activity log file to the network for user profile updates.  

 

Third Use Case 

 

Dorothy is a 69 year old woman who lives alone in Blaydon. Dorothy uses a walker to get around because 

she finds that it gives her confidence after her fall one year ago. Moreover, it helps her in keeping a 

constant physical activity for a correct rehabilitation, according to the medical prescriptions. Dorothy loves 

shopping and likes it when her friend occasionally takes her shopping at the MetroCentre. While she likes 

the MetroCentre, she is nervous about going there alone and worries that she would get lost. But she would 

like to go there more often. 

Dorothy is shown the FriTab and told that it clips onto FriWalk devices which are available at the 

MetroCentre. She decides to try out the FriTab system.  Several days later, the system suggests that 

Dorothy visit the MetroCentre to enjoy some shopping. The system has noticed that Dorothy has stayed 

indoors for several days and believes that she would benefit from getting out. Dorothy thinks that it would 

be a good idea and asks the FriTab for more information. The FriTab suggests that she get the 2:15 bus 

from the nearby bus stop which will take her to the MetroCentre. It tells her that it will give her directions 

to the MetroCentre and will help her find her way around inside. 

She gets the bus and travels to the MetroCentre. When she gets there she swaps her walker for a FriWalk 

and clips in her FriTab. The FriTab shows her that several shops have sales and gives her directions. 

Furthermore, it also advices her of the presence of her friends Rita and Marion, both equipped with a 

FriWalk. Dorothy meet them in front of the Central Café and then take a walk in some shops. The FriTab 

suggest them to go to the theatre insinde the mall to see a romantic movie. After the movie, Rita and 

Marion decided to go home, while the FriTab suggests Dorothy to visit the mall first floor to take a look to 

some very affordable items at the shoe shop. Meanwhile, Dorothy accomplishes her daily schedule of 

physical activities. After a while, when she starts feeling tired, she presses a button on the FriTab and it 

directs her back to where her walker is. She unclips her FriTab and it tells her where to get the bus home. 

 

5 The choice of ACANTO 
 

The Activity Planner decides a plan (Activity Plan) that implements an activity with several possibilities 

for its execution. The Activity Plan is refined picking the most appropriate choice by the Reactive Planner, 

which leverages its “on-the-ground” knowledge (Task 5.2). Therefore, the formal language for expressing 

plans should be flexible enough to allow for a sequence of refinements. Our  starting point for this 

formalism will be Planning Domain Definition Language (PDDL). PDDL is widely used by researchers in 

the field of planning, and is the official language of the International Planning Competition. Over the years, 
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various extensions and improvements have been proposed to allow the definition of more complex and 

realistic problems and scenarios. The version 2.1 of PDDL introduces the possibility to model actions 

having variable durations and producing continuous effects. 

The subsequent version, PDDL 3.0, is an extension providing the formalism to express constraints and 

preferences that must be considered by the planner for the generation of the final plan [56]. These features 

are particularly suitable for the ACANTO framework, in particular to model the various activities, giving 

different scores to each task based on the profile of the user. In addition, hard constraints can be described 

based on the needs of each user (for example to remain always within a given distance from the bathroom). 

The generated plan must respect all the hard constraints, and maximize the score based on the expressed 

preferences. The probabilistic extension of PDDL (PPDDL) provides a set of statements that can be used to 

model uncertain actions having different results, each with a given probability. The outcome of an action 

can affect the value of the reward. The produced plan must therefore choose a sequence of actions 

maximizing the probability of reaching the goal or maximizing the expected value of the reward. With 

respect to the scenarios depicted previously, we can report the following list of hard constraints, 

preferences and probabilistic preferences: 

 

Scenario Hard Constraints Preferences 
Probabilistic 

preference 

Use Case I: Isabel 

• Always remain within 

distance x from the 

bathroom 

 

• Walking 

• Meeting someone who 

enjoys walking 

• Visiting the grocery 

store 

• Level of tiredness 

always below y 

Use Case II: Michael 

• Avoid stairs 

• Maximum walked 

distance below x 

• Speed always below y 

• Stop every z meters and 

rest for some minutes 

• Interest in natural 

history 

• Visiting museums 

• Avoid crowded 

rooms 

Use Case III: Dorothy 

• Never remain alone 

• Walk at least x meters 

• Walk at least y minutes 

(medical prescriptions) 

• visiting shops with 

sales 

• visiting clothing shops 

• watching romantic 

movies 

• Waiting at most x 

minutes at the bus 

stop 

 

For our purposes, there is also the need to model the coexistence of interacting people. Planning problems 

involving more than one person can be modelled with the adoption of a syntax like the one proposed for 

the multiple agents extension of the PDDL (MA-PDDL) [57]. Another language derived from PDDL that 

presents features which may be useful for the description of planning problems within ACANTO, is the 

NU-PDDL [58]. In fact, it provides a specific syntax to express temporal constraints that must be respected 

by the generated plan, based on Computation Tree Logic (CTL) formulae.   

 

Another important advantage of using PDDL and its variants is that these languages are widely used by the 

planning community, and for this reason there exists numerous open-source applications able to produce a 

valid plan to solve the given problem. For example, over the years a number of planners has been 

developed and submitted to the various International Planning Challenges, and many of them are freely 

available, together with their source code. We can thus take advantage of these tools, basing our work on 

some of their ideas, and integrating and adapting them for our purposes. In light of the previous analysis, 

perfect candidates for ACANTO are tools like OPTIC (Optimising Preferences and Time-Dependent 

Costs) [59], a planner supporting temporal problems with preferences expressed using the PDDL3 

formalism.  

 

        

5.1 Planning Domain 
 

From the persepctive of the Activity Planner, all the social activities share the same family of possible 
elementary actions (instantiated with different parameters), hard and soft constraints, and utility 
functions. Thus, the Activity Planner adopts a static PDDL domain to model all the possible activities 
that it will be required to refine into a sequence of Tasks, defined as follows:   
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;; DOMAIN FOR THE ACTIVITY PLANNING 

;; A domain represents a general class of problems, sharing the same predicates, functions, and 

;; possible actions 

(define (domain Activity-Plan) 

 

;; All the required features must be indicated, so the planner understands which features  

;; it must provide 

(:requirements :strips :typing :fluents :negative-preconditions :equality :durative-actions :time 
:timed-initial-literals) 

 

;; From the persepctive of the Activity Planner, the plan corresponds to the visit of a sequence of 
Points of Interest, each associated with some metric information 

(:types 

      Poi - object 

) 

 

;; Here we define all the logical predicates for the problem, which can involve objects of the domain, 
;; and define which properties are true at each state during the execution of the plan  

(:predicates 

      ;; the predicate “at” defines where an user is during each state. For example “at p0” means 

      ;; that the user is currently at the Poi p0 

      (at ?p - Poi) 

 

      ;; the predicate “visitable” defines which Pois are visitable (for example some 

      ;; activities could be temporarily not available 

      (visitable ?p – Poi) 

 

      ;; the predicate “to-visit” defines which Pois have still to be visited 

      (to-visit ?p – Poi) 

 

      ;; the predicate “link” is used to model the map of the environment, defining which Pois are  

      ;; directly connected.  

      (link ?p1 ?p2 - Poi) 

 

      ;; the predicate “idle” defines whether the user is currently not executing any action  

      (idle) 

    ) 

 

;; Here we define all the functions for the problem. Functions can take zero or more arguments,  

;; defining which objects of the domain are involved. To each combination of arguments, a  

;; function can associate a numerical value, which can change over time. 

;; For example there could be a function “age ?p – Person”, defining for each person its age. 

    (:functions 

      ;; the function “min-total-distance” keeps track of the minimum distance walked from  

      ;; the beginning up to now 

      (min-total-distance) 

 

      ;; the function “max-total-distance” keeps track of the maximum distance walked from  

      ;; the beginning up to now 

      (max-total-distance) 
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      ;; the function “min-partial-distance” keeps track of the minimum distance walked from  

      ;; the last rest up to now (it is reset to 0 during each rest) 

      (min-partial-distance) 

 

      ;; the function “max-partial-distance” keeps track of the maximum distance walked from  

      ;; the last rest up to now (it is reset to 0 during each rest) 

      (max-partial-distance) 

 

 

      ;; the function “satisfaction” is used to model the current level of satisfaction for the user, 

      ;; which depends on the scores associated to the visited Pois 

      (satisfaction) 

 

      ;; the functions “min-distance” and “max-distance” are used to model the minimum and 

      ;; maximum distance between each pair of connected Pois. In this way, it is possible to  

      ;; compute the total walked distance. 

      (min-distance ?p1 ?p2 - Poi) 

      (max-distance ?p1 ?p2 - Poi) 

 

      ;; the function “rest-duration” indicates how long each rest should last 

      (rest-duration) 

 

      ;; the function “speed” is used to model the speed at which Michael should move around  

      (speed) 

 

      ;; the function “visit-time” indicates for each Poi ?p how much time it is required to visit it 

      (visit-time ?p – Poi) 

 

      ;; the function “interest” indicates for each Poi how much the user is interested in it 

      (interest ?p – Poi) 

    ) 

 

    ;; durative-actions are used to model actions with some (even variable) duration, and having 

    ;; temporal conditions and effects 

 

    ;; the durative-action move represents  the task of moving from one Poi of the museum  

    ;; to another 

    (:durative-action move 

     :parameters (?from – Poi ?to – Poi) 

      

     ;; the duration of the move action depends both on the distance between the two Pois, and also 

     ;; on the speed at which the user moves   

     :duration (= ?duration (/ (max-distance ?from ?to) (speed))) 

 

    ;; the conditions are that the user at the beginning must be at the ?from Poi, he 

    ;; must be idle, and the two Pois must be connected 

     :condition  

       (and 

         (at start (at ?from)) 

         (at start (link ?from ?to)) 

         (at start (idle)) 
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       ) 

      

     ;; the effects are that at the end the user will be at the destination (?to) Poi, and both the  

     ;; partial and the total walked distance are suitably increased 

     :effect 

       (and 

         (at start (not (at ?from))) 

         (at start (not (idle))) 

         (at end (at ?to)) 

         (at end (increase (min-total-distance) (min-distance ?from ?to))) 

         (at end (increase (max-total-distance) (max-distance ?from ?to))) 

         (at end (increase (min-partial-distance) (min-distance ?from ?to))) 

         (at end (increase (max-partial-distance) (max-distance ?from ?to))) 

         (at end (idle)) 

       ) 

    ) 

 

    ;; the durative-action “rest” represents  the task of resting for some time 

    (:durative-action rest 

     :parameters (?p - Poi) 

 

     ;; the duration of the rest is indicated by the value of the “rest-duration” function   

     :duration (= ?duration (rest-duration)) 

 

     ;; At the beginning, the user must be idle 

     :condition  

       (and 

         (at start (idle) 

         (at start (at ?p)) 

         (over all (at ?p)) 

 

     ;; at the end the user exits from the “resting” state, and the partial walked distance is reset to 0 

     :effect 

       (and 

         (at start (not (idle))) 

         (at end (idle)) 

         (at end (assign (partial-distance) 0)) 

       ) 

    ) 

 

;; the durative-action “visit” represents  the task of visiting a Poi  

(:durative-action visit 

     :parameters (?p – Poi) 

 

     ;; the duration depends on the specific “visit-time” for Poi ?p  

     :duration (= ?duration (visit-time ?p)) 

 

     ;; the Poi must not have been already visited, and the user must be idle. 

     ;; In addition,  the user be at that specific Poi and the Poi 

     ;; must be in the state “visitable” 
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     :condition  

       (and 

         (at start (not (visited ?p))) 

         (at start (idle)) 

         (at start (visitable ?p)) 

         (over all (visitable ?p)) 

         (at start (at ?r)) 

         (over all (at ?r)) 

       ) 

 

     ;; At the end the Poi is flagged as “visited”, and the level of satisfaction is increased  

     ;; depending on the interest for the specific Poi 

     :effect 

       (and 

         (at start (not (idle))) 

         (at end (idle)) 

         (at end (visited ?r)) 

         (at end (increase (satisfaction) (interest ?p))) 

       ) 

     ) 

) 

 

5.2 Extension to groups 
 

Up to now we have shown the main concepts and ideas adopted to model Activity Plans, considering 
a scenario with a single user. However, in order to achieve the social aspect of ACANTO activities, the 
planner must support a context where an activity is carried out by more than one person. 

However, since the kind of possible actions, constraints and preferences remains the same, a minor 
extension of the original model suffices to provide support for a multi-agent context. 

The planning domain can be extended by introducing a new type of object to represent an Agent 
named “User”. In addition, a score is given by each User to each PoI. Soft constraints associated to 
each person (e.g. “prefer plans avoiding the use of lifts”) are modelled as costs given to the different 
PoIs and connectors between pairs of PoIs:  

 

    ;; the level of interest of an user ?u to a specific PoI ?p  

    ;; (inferred from the user profile) 

    (interest ?u - User ?p - Poi) 

     

    ;; the cost given by an user ?u to a specific PoI ?p  

    ;; (inferred from the user profile) 

    (poi_cost ?u - User ?p - Poi) 

     

    ;; the cost given by an user ?u to a link between two PoIs  

    ;; ?p1 and ?p2 (inferred from the user profile) 

    (link_cost ?u - User ?p1 - Poi ?p2 - Poi) 

 

 

 

The hard constraints  are generated as the conjunction of all the hard constraints of each user. For 
example, the constraint on the total duration max-global-time is determined as: 

max-global-time = 𝑚𝑖𝑛𝑢∈Users max-time-allowed (𝑢)   
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The metric function to optimize is then the weighted sum of the overall score of the visited PoIs for 
all the users, and the overall costs deriving from the violation of the soft-constraints: 

 
 

 

where x[i] is a Boolean indicator variable, indicating whether the i-th PoI  is part of the solution, 
𝑦[〈𝑝𝑖 , 𝑝𝑗〉]  indicates wheter the link 〈𝑝𝑖 , 𝑝𝑗〉   is part of the solution, and 𝑤1, 𝑤2, 𝑤3 ∈  ℝ are weighting 

factors, allowing us to give different weights to the overall interest and to the violation of soft 
constraints involving both PoIs and connectors.   

 

5.3 An example 
 

In what follows we present how the Use Case II (referred to Michael) can be encoded into an instance 
of a PDDL planning problem (according to the Activity Planning domain), that can be solved by the 
Activity Planner to determine the plan to be executed. 

 

;; PROBLEM VISIT 

;; a problem represents a specific instance of a planning problem, defining which are the specific 

;; objects, and the initial and goal conditions 

(define (problem VISIT) 

    (:domain MUSEUM) 

 

    ;; for this scenario, we model the different Pois for the Museum of National History. 

    ;; In particular, there is a room dedicated to plants, one dedicated to animals and one dedicated to 

    ;; fungi, all represented as Points of interest. In addition, the atrium is represented as a Poi 

    ;; where the execution of the plan must start and end  

    (:objects 

      roomPlants - Poi 

      roomAnimals - Poi 

      roomFungi – Poi 

      … 

      atrium – Poi 

) 

 

    (:init 

      ;; initially Michael is in the atrium. We define the links between the various rooms. 

      ;; Then we define which rooms are “visitable”. 

      (at atrium)  

      (link atrium roomPlants) 

 

      (link roomPlants atrium) 

      (link roomPlants roomAnimals) 

      (link roomPlants roomFungi) 

      …      

      

      (visitable roomPlants) 

      (visitable roomAnimals) 
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      (visitable roomFungi) 

 

      ;; here we initialise the values of the functions, setting to 0 the walked distances, and defining 

      ;; Michael’s level of interest for each of the Pois (30 for plants, 60 for animals, and 15 for fungi). 

      ;; We also define the distance between each pair of connected locations, the duration of each rest, 

      ;; the walking speed, and the time required to visit each room.  

      (= (min-total-distance) 0) 

      (= (max-total-distance) 0) 

      (= (min-partial-distance) 0) 

      (= (max-partial-distance) 0) 

 

      (= (interest roomPlants) 30) 

      (= (interest roomAnimals) 60) 

      (= (interest roomFungi) 15) 

      (= (max-distance atrium roomPlants) 15) 

      (= (max-distance roomPlants roomAnimals) 10) 

      … 

     (= (rest-duration) 300) 

 

     (= (speed) 1) 

     (= (visit-time roomPlants) 600) 

     (= (visit-time roomAnimals) 900) 

     (= (visit-time roomFungi) 600) 

 

     ;; here we define some timed initial literals, to model predicates which become true/false at some 

     ;; specific time instants after the execution of the plan, and which can be used to model some 

     ;; known exogenous events. 

     ;; For example, here we model the fact that between time 700 and time 1000 the room  

     ;; “roomPlants” becomes unavailable (e.g. there is a guided tour during that interval) 

     (at 700.00 (not (visitable roomPlants))) 

     (at 1000.00 (visitable roomPlants)) 

)      

;; for this problem, Michael’s final goal is to be at the atrium and to have walked a distance between 

;; 30 and 100 meters   

(:goal 

     (and 

       (at atrium) 

       (>= (min-total-distance) 30) 

       (<= (max-total-distance) 100) 

       … 

     ) 

) 

 

;; here we define some hard constraints and some preferences 

(:constraints 

     (and 

       ;; the partial distance walked (between two consecutives rest) must always be lower than 25 

       ;; meters 

       (always (<= (partial-distance) 25)) 

 

;; for this problem, we want to maximize Michael’s satisfaction 

(:metric maximize  
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      (satisfaction) 

) 

 

 

6 Semantic representation of plans 
 

In ACANTO, the notion of optimality is with respect to the goals of the activity, which may require a 
minimum distance travelled, a maximum amount of time or a minimum number of calories burned. 
While the notion of undesirable circumstances still exists (e.g., undesirable areas in the environment 
and crowding), maximising progress, in the sense of minimising distance and time spent travelling, 
may not be the primary goal. Users or carers may nevertheless specify a maximum time for an 
activity. In ACANTO, the user may be part of a group, thus the execution of an activity, the constraints 
and metrics to apply to the various point of interest and interconnections must be considered with 
respect to the entire group.  

From the perspective of the Activity Planner, an activity corresponds to a sequence of points of 
interest to visit in a certain order, depending on the existing interconnections among the various 
Pois in the abstract representation of the environment. The Activity Planner is thus required to 
synthesize a sequence of tasks representing the transfer and visit of the different Pois, trying to 
optimise the overall score (depending both on the level of interest for the different Pois, and on the 
satisfaction of the soft constraints) while fulfilling all the hard constraints. The tasks composing a 
plan are thus of the form “nextPoi Pi Pj”. To each of these tasks is associated a sequence of elementary 
actions to be performed before leaving the current Poi Pi, the action corresponding to the motion 
between Pi and Pj, and a sequence of actions to be executed after reaching Pj. The actions to be 
performed before leaving or after reaching a certain point of interest depend on the specific point of 
interest involved (e.g. if the Poi is a painting in a museum, the action when reaching it could be to 
display some related information on the FriTab).    

 

 

7 Monitoring the execution 
 

At an abstract semantic level, an activity is the traversal of a graph and an activity plan is a 
concatenation of edges. At a concrete syntactic level, such a path will be represented by elementary 
control actions in a language such as PDDL, as described above. The control actions will specify 
precisely how to navigate from one node in the environment to the next. To meet the high level 
requirements of an activity, such as the number of calories to consume, the control actions may also 
specify a required speed and other information, such as probabilistic distributions. The Activity 
Planner makes use of probabilistic information (e.g., the probability of being able to make progress 
at a desired speed, given the amount of crowding) in a deterministic way. 

Each control action has inherent pre- and post-conditions that may or must be satisfied, depending 
on the context. Many of the pre- and post-conditions of control actions will be implicitly encoded in 
the edge weighting function. A priori, the plan will be designed to satisfy all constraints, but the user 
may from the outset be forced or choose to deviate from the original plan. Such deviations may arise 
by virtue of crowding or due to the uncooperativeness of the user.  In the first case, the deviation 
could be suggested by the Reactive Planner; in the second case, the user may simply ignore the 
instructions given by the FriTab. In either case, there may be a significant reduction in the 
probability of satisfying the goals of the original activity plan. It might also be the case that, in 
deviating, the user performs more exercise and burns more calories than anticipated. It is therefore 
necessary to monitor the plan’s progress and react accordingly. 

The Activity Monitor will thus construct path metrics that quantify what has actually taken place so 
far (e.g., what distance and how fast the user has travelled; the number of calories the user has 
consumed; social interaction) and what remains to be done to achieve the goals of the activity 
(remaining distance to travel and number of calories yet to burn, etc). The metrics can be 
represented as edge weights that are summed over the length of a path. In the case that the Activity 
Monitor judges that the current plan is unlikely to achieve the goals of the activity, it will trigger a re-
plan. 
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In DALi, a new long term plan is generated if the user strays too far from the original plan. In 
ACANTO, the initially proposed route of an activity may be considered only a “soft” constraint that 
may be violated, with the metrics over the route being more important. In contrast, constraints that 
arise from the user’s profile, such as the user’s maximum speed and the maximum time the user is 
prepared to spend on the activity, will be considered “hard” constraints that must not be violated. 

A new activity plan will therefore be generated when the activity metrics diverge significantly from 
their desired values or when the Activity Monitor predicts that the metrics will diverge in the future 
with high probability. The Activity Planner may skip some or all of the remaining planned sub-
activities. This could arise because the allotted time for the activity has been reached or because the 
user has already had sufficient exercise or consumed sufficient calories as a result of unplanned 
detours. In general, the Activity Planner will try to achieve as many of the soft constraints and goals 
as possible, while always respecting the hard constraints. 

The Activity Planner may have to consider conflicting constraints that cannot be entirely encoded in 
an edge weighting function. For example, circumstances could arise such that the remaining time 
allotted to an activity is insufficient for the user to consume the required number of calories or travel 
the required distance, given the users maximum comfortable speed. This will become clear from the 
output of the path planner (e.g., the chosen optimal path will have an overall time that is too great), 
but must be handled by higher level logic. To resolve such problems, we assume that activities will 
be composed from a series of sub-activities (tasks), each making a quantified and prioritised 
contribution to the overall activity. The Activity Planner will thus be able to discard the least 
beneficial remaining sub-activities, in order to achieve as much of the originally planned benefit as 
possible, without violating the user’s hard constraints. 

The foregoing descriptions have been user-centric, but it is the specific intention of ACANTO to 
consider group activities. There must be some online collaboration between the motion planners of 
different users, to maintain the cohesion of the group. 

The means by which the Reactive Planner will maintain group cohesion on a specified plan has been 
described in Deliverable D5.2, however the Activity Planner may wish to change the plan with 
respect to an individual’s specific requirements. In general, it is desirable to make each FriWalk / 
FriTab as autonomous as possible. To prevent the Activity Planner compromising this goal (e.g., by 
needing to regularly communicate with other users in order to find a consensus plan), we suppose 
that the system will pre-define how the activity will be modified in the event that it must be 
truncated. To implement this “implicit collaboration” efficiently, each Activity Planner should be 
aware of the limitations of the other users. A further problem is that although the participants of 
group activities will be chosen to have roughly equivalent abilities, the actual distance travelled 
(effort expended, calories burned, etc) by individuals will be different. This limits the accuracy with 
which it is possible for one FriWalk / FriTab to predict the re-planning needs of another without 
sharing information. 

The a priori information used by the Activity Planner and the Monitor Service is based on statistical 
data collected from previous instances of ACANTO Activities recorded in the past by the Activity 
evaluator or from simulation and predictions. Additional live information on the environment can be 
provided by the real time sensing system.  
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8 Conclusion 
The PDDL language is suitable to represent activity plans at a syntactic level. We have shown that 
this language is adequately expressive to represent probabilistic information and other annotations 
necessary for the activity planning required by the ACANTO case studies. We have described how we 
intend to abstract the environment into a graph data structure and how various metrics relating to 
an activity can be encoded in the weights assigned to its edges. Paths in the environment that 
optimise parameters of an activity can thus be found by finding the optimal path in the abstract 
graph. The metrics will also be used to monitor the progress of the user with respect to an activity 
and anticipate when the activity needs to be re-planned or terminated. 
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